Do you want to publish a course? Click here

Cascaded Residual Density Network for Crowd Counting

159   0   0.0 ( 0 )
 Added by Luchuan Song
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Crowd counting is a challenging task due to the issues such as scale variation and perspective variation in real crowd scenes. In this paper, we propose a novel Cascaded Residual Density Network (CRDNet) in a coarse-to-fine approach to generate the high-quality density map for crowd counting more accurately. (1) We estimate the residual density maps by multi-scale pyramidal features through cascaded residual density modules. It can improve the quality of density map layer by layer effectively. (2) A novel additional local count loss is presented to refine the accuracy of crowd counting, which reduces the errors of pixel-wise Euclidean loss by restricting the number of people in the local crowd areas. Experiments on two public benchmark datasets show that the proposed method achieves effective improvement compared with the state-of-the-art methods.



rate research

Read More

126 - Xiaowen Shi , Xin Li , Caili Wu 2020
Automatic analysis of highly crowded people has attracted extensive attention from computer vision research. Previous approaches for crowd counting have already achieved promising performance across various benchmarks. However, to deal with the real situation, we hope the model run as fast as possible while keeping accuracy. In this paper, we propose a compact convolutional neural network for crowd counting which learns a more efficient model with a small number of parameters. With three parallel filters executing the convolutional operation on the input image simultaneously at the front of the network, our model could achieve nearly real-time speed and save more computing resources. Experiments on two benchmarks show that our proposed method not only takes a balance between performance and efficiency which is more suitable for actual scenes but also is superior to existing light-weight models in speed.
The crowd counting task aims at estimating the number of people located in an image or a frame from videos. Existing methods widely adopt density maps as the training targets to optimize the point-to-point loss. While in testing phase, we only focus on the differences between the crowd numbers and the global summation of density maps, which indicate the inconsistency between the training targets and the evaluation criteria. To solve this problem, we introduce a new target, named local counting map (LCM), to obtain more accurate results than density map based approaches. Moreover, we also propose an adaptive mixture regression framework with three modules in a coarse-to-fine manner to further improve the precision of the crowd estimation: scale-aware module (SAM), mixture regression module (MRM) and adaptive soft interval module (ASIM). Specifically, SAM fully utilizes the context and multi-scale information from different convolutional features; MRM and ASIM perform more precise counting regression on local patches of images. Compared with current methods, the proposed method reports better performances on the typical datasets. The source code is available at https://github.com/xiyang1012/Local-Crowd-Counting.
State-of-the-art multi-object tracking~(MOT) methods follow the tracking-by-detection paradigm, where object trajectories are obtained by associating per-frame outputs of object detectors. In crowded scenes, however, detectors often fail to obtain accurate detections due to heavy occlusions and high crowd density. In this paper, we propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes. Using crowd density maps, we jointly model detection, counting, and tracking of multiple targets as a network flow program, which simultaneously finds the global optimal detections and trajectories of multiple targets over the whole video. This is in contrast to prior MOT methods that either ignore the crowd density and thus are prone to errors in crowded scenes, or rely on a suboptimal two-step process using heuristic density-aware point-tracks for matching targets.Our approach yields promising results on public benchmarks of various domains including people tracking, cell tracking, and fish tracking.
While the performance of crowd counting via deep learning has been improved dramatically in the recent years, it remains an ingrained problem due to cluttered backgrounds and varying scales of people within an image. In this paper, we propose a Shallow feature based Dense Attention Network (SDANet) for crowd counting from still images, which diminishes the impact of backgrounds via involving a shallow feature based attention model, and meanwhile, captures multi-scale information via densely connecting hierarchical image features. Specifically, inspired by the observation that backgrounds and human crowds generally have noticeably different responses in shallow features, we decide to build our attention model upon shallow-feature maps, which results in accurate background-pixel detection. Moreover, considering that the most representative features of people across different scales can appear in different layers of a feature extraction network, to better keep them all, we propose to densely connect hierarchical image features of different layers and subsequently encode them for estimating crowd density. Experimental results on three benchmark datasets clearly demonstrate the superiority of SDANet when dealing with different scenarios. Particularly, on the challenging UCF CC 50 dataset, our method outperforms other existing methods by a large margin, as is evident from a remarkable 11.9% Mean Absolute Error (MAE) drop of our SDANet.
In this paper, we address the challenging problem of crowd counting in congested scenes. Specifically, we present Inverse Attention Guided Deep Crowd Counting Network (IA-DCCN) that efficiently infuses segmentation information through an inverse attention mechanism into the counting network, resulting in significant improvements. The proposed method, which is based on VGG-16, is a single-step training framework and is simple to implement. The use of segmentation information results in minimal computational overhead and does not require any additional annotations. We demonstrate the significance of segmentation guided inverse attention through a detailed analysis and ablation study. Furthermore, the proposed method is evaluated on three challenging crowd counting datasets and is shown to achieve significant improvements over several recent methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا