Do you want to publish a course? Click here

Focal Inverse Distance Transform Maps for Crowd Localization and Counting in Dense Crowd

175   0   0.0 ( 0 )
 Added by Dingkang Liang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel map for dense crowd localization and crowd counting. Most crowd counting methods utilize convolution neural networks (CNN) to regress a density map, achieving significant progress recently. However, these regression-based methods are often unable to provide a precise location for each person, attributed to two crucial reasons: 1) the density map consists of a series of blurry Gaussian blobs, 2) severe overlaps exist in the dense region of the density map. To tackle this issue, we propose a novel Focal Inverse Distance Transform (FIDT) map for crowd localization and counting. Compared with the density maps, the FIDT maps accurately describe the peoples location, without overlap between nearby heads in dense regions. We simultaneously implement crowd localization and counting by regressing the FIDT map. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art localization-based methods in crowd localization tasks, achieving very competitive performance compared with the regression-based methods in counting tasks. In addition, the proposed method presents strong robustness for the negative samples and extremely dense scenes, which further verifies the effectiveness of the FIDT map. The code and models are available at https://github.com/dk-liang/FIDTM.



rate research

Read More

Recent works on crowd counting mainly leverage Convolutional Neural Networks (CNNs) to count by regressing density maps, and have achieved great progress. In the density map, each person is represented by a Gaussian blob, and the final count is obtained from the integration of the whole map. However, it is difficult to accurately predict the density map on dense regions. A major issue is that the density map on dense regions usually accumulates density values from a number of nearby Gaussian blobs, yielding different large density values on a small set of pixels. This makes the density map present a long-tailed distribution of pixel-wise density values. In this paper, we aim to address this long-tailed distribution issue in the density map. Specifically, we propose a simple yet effective Learning to Scale (L2S) module, which automatically scales dense regions into reasonable density levels. It dynamically separates the overlapped blobs, decomposes the accumulated values in the ground-truth density map, and thus alleviates the long-tailed distribution of density values, which helps the model to better learn the density map. We also explore the effectiveness of L2S in localizing people by finding the local minima of the quantized distance (w.r.t. person location map), which has a similar issue as density map regression. To the best of our knowledge, such localization method is also novel in localization-based crowd counting. We further introduce a customized dynamic cross-entropy loss, significantly improving the localization-based model optimization. Extensive experiments demonstrate that the proposed framework termed AutoScale improves upon some state-of-the-art methods in both regression and localization benchmarks on three crowded datasets and achieves very competitive performance on two sparse datasets.
In this paper, we address the challenging problem of crowd counting in congested scenes. Specifically, we present Inverse Attention Guided Deep Crowd Counting Network (IA-DCCN) that efficiently infuses segmentation information through an inverse attention mechanism into the counting network, resulting in significant improvements. The proposed method, which is based on VGG-16, is a single-step training framework and is simple to implement. The use of segmentation information results in minimal computational overhead and does not require any additional annotations. We demonstrate the significance of segmentation guided inverse attention through a detailed analysis and ablation study. Furthermore, the proposed method is evaluated on three challenging crowd counting datasets and is shown to achieve significant improvements over several recent methods.
While the performance of crowd counting via deep learning has been improved dramatically in the recent years, it remains an ingrained problem due to cluttered backgrounds and varying scales of people within an image. In this paper, we propose a Shallow feature based Dense Attention Network (SDANet) for crowd counting from still images, which diminishes the impact of backgrounds via involving a shallow feature based attention model, and meanwhile, captures multi-scale information via densely connecting hierarchical image features. Specifically, inspired by the observation that backgrounds and human crowds generally have noticeably different responses in shallow features, we decide to build our attention model upon shallow-feature maps, which results in accurate background-pixel detection. Moreover, considering that the most representative features of people across different scales can appear in different layers of a feature extraction network, to better keep them all, we propose to densely connect hierarchical image features of different layers and subsequently encode them for estimating crowd density. Experimental results on three benchmark datasets clearly demonstrate the superiority of SDANet when dealing with different scenarios. Particularly, on the challenging UCF CC 50 dataset, our method outperforms other existing methods by a large margin, as is evident from a remarkable 11.9% Mean Absolute Error (MAE) drop of our SDANet.
In crowd counting, each training image contains multiple people, where each person is annotated by a dot. Existing crowd counting methods need to use a Gaussian to smooth each annotated dot or to estimate the likelihood of every pixel given the annotated point. In this paper, we show that imposing Gaussians to annotations hurts generalization performance. Instead, we propose to use Distribution Matching for crowd COUNTing (DM-Count). In DM-Count, we use Optimal Transport (OT) to measure the similarity between the normalized predicted density map and the normalized ground truth density map. To stabilize OT computation, we include a Total Variation loss in our model. We show that the generalization error bound of DM-Count is tighter than that of the Gaussian smoothed methods. In terms of Mean Absolute Error, DM-Count outperforms the previous state-of-the-art methods by a large margin on two large-scale counting datasets, UCF-QNRF and NWPU, and achieves the state-of-the-art results on the ShanghaiTech and UCF-CC50 datasets. DM-Count reduced the error of the state-of-the-art published result by approximately 16%. Code is available at https://github.com/cvlab-stonybrook/DM-Count.
State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. They typically use the same filters over the whole image or over large image patches. Only then do they estimate local scale to compensate for perspective distortion. This is typically achieved by training an auxiliary classifier to select, for predefined image patches, the best kernel size among a limited set of choices. As such, these methods are not end-to-end trainable and restricted in the scope of context they can leverage. In this paper, we introduce an end-to-end trainable deep architecture that combines features obtained using multiple receptive field sizes and learns the importance of each such feature at each image location. In other words, our approach adaptively encodes the scale of the contextual information required to accurately predict crowd density. This yields an algorithm that outperforms state-of-the-art crowd counting methods, especially when perspective effects are strong.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا