The energy dissipation rate in a nonequilibirum reaction system can be determined by the reaction rates in the underlying reaction network. By developing a coarse-graining process in state space and a corresponding renormalization procedure for reaction rates, we find that energy dissipation rate has an inverse power-law dependence on the number of microscopic states in a coarse-grained state. The dissipation scaling law requires self-similarity of the underlying network, and the scaling exponent depends on the network structure and the flux correlation. Implications of this inverse dissipation scaling law for active flow systems such as microtubule-kinesin mixture are discussed.
A generically observed mechanism that drives the self-organization of living systems is interaction via chemical signals among the individual elements -- which may represent cells, bacteria, or even enzymes. Here we propose a novel mechanism for such interactions, in the context of chemotaxis, which originates from the polarity of the particles and which generalizes the well-known Keller--Segel interaction term. We study the resulting large-scale dynamical properties of a system of such chemotactic particles using the exact stochastic formulation of Dean and Kawasaki along with dynamical renormalization group analysis of the critical state of the system. At this critical point, an emergent Galilean symmetry is identified, which allows us to obtain the dynamical scaling exponents exactly; these exponents reveal superdiffusive density fluctuations and non-Poissonian number fluctuations. We expect our results to shed light on how molecular regulation of chemotactic circuits can determine large-scale behavior of cell colonies and tissues.
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the overall fluctuations of the dynamics, representing the uncertainties in the past and in the future. A generalized Einstein relation is a consequence solely because the dynamics being stationary; and the Green-Kubo formula reflects a balance between the two mechanisms. Equilibrium with reversibility is characterized by a novel covariance symmetry.
We investigate the particle and heat transport in quantum junctions with the geometry of star graphs. The system is in a nonequilibrium steady state, characterized by the different temperatures and chemical potentials of the heat reservoirs connected to the edges of the graph. We explore the Landauer-Buettiker state and its orbit under parity and time reversal transformations. Both particle number and total energy are conserved in these states. However the heat and chemical potential energy are in general not separately conserved, which gives origin to a basic process of energy transmutation among them. We study both directions of this process in detail, introducing appropriate efficiency coefficients. For scale invariant interactions in the junction our results are exact and explicit. They cover the whole parameter space and take into account all nonlinear effects. The energy transmutation depends on the particle statistics.
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sasa formulation [Phys. Rev. Lett. 95, 130602 (2005)], obtained for Langevin equations in steady states, as it also holds for transient regimes and for discrete jump processes involving small entropic changes. Moreover, a general formulation includes two times and the new concepts of two-time work, kinetic energy, and of a two-time heat exchange that can be related to a nonequilibrium effective temperature. Numerical simulations of a chain of anharmonic oscillators and of a model for a molecular motor driven by ATP hydrolysis illustrate these points.
Enhanced diffusion and anti-chemotaxis of enzymes have been reported in several experiments in the last decade, opening up entirely new avenues of research in the bio-nanosciences both at the applied and fundamental level. Here, we introduce a novel theoretical framework, rooted in non-equilibrium effects characteristic of catalytic cycles, that explains all observations made so far in this field. In addition, our theory predicts entirely novel effects, such as dissipation-induced switch between anti-chemotactic and chemotactic behavior.