No Arabic abstract
A generically observed mechanism that drives the self-organization of living systems is interaction via chemical signals among the individual elements -- which may represent cells, bacteria, or even enzymes. Here we propose a novel mechanism for such interactions, in the context of chemotaxis, which originates from the polarity of the particles and which generalizes the well-known Keller--Segel interaction term. We study the resulting large-scale dynamical properties of a system of such chemotactic particles using the exact stochastic formulation of Dean and Kawasaki along with dynamical renormalization group analysis of the critical state of the system. At this critical point, an emergent Galilean symmetry is identified, which allows us to obtain the dynamical scaling exponents exactly; these exponents reveal superdiffusive density fluctuations and non-Poissonian number fluctuations. We expect our results to shed light on how molecular regulation of chemotactic circuits can determine large-scale behavior of cell colonies and tissues.
Enhanced diffusion and anti-chemotaxis of enzymes have been reported in several experiments in the last decade, opening up entirely new avenues of research in the bio-nanosciences both at the applied and fundamental level. Here, we introduce a novel theoretical framework, rooted in non-equilibrium effects characteristic of catalytic cycles, that explains all observations made so far in this field. In addition, our theory predicts entirely novel effects, such as dissipation-induced switch between anti-chemotactic and chemotactic behavior.
The energy dissipation rate in a nonequilibirum reaction system can be determined by the reaction rates in the underlying reaction network. By developing a coarse-graining process in state space and a corresponding renormalization procedure for reaction rates, we find that energy dissipation rate has an inverse power-law dependence on the number of microscopic states in a coarse-grained state. The dissipation scaling law requires self-similarity of the underlying network, and the scaling exponent depends on the network structure and the flux correlation. Implications of this inverse dissipation scaling law for active flow systems such as microtubule-kinesin mixture are discussed.
We study extreme value statistics of multiple sequences of random variables. For each sequence with N variables, independently drawn from the same distribution, the running maximum is defined as the largest variable to date. We compare the running maxima of m independent sequences, and investigate the probability S_N that the maxima are perfectly ordered, that is, the running maximum of the first sequence is always larger than that of the second sequence, which is always larger than the running maximum of the third sequence, and so on. The probability S_N is universal: it does not depend on the distribution from which the random variables are drawn. For two sequences, S_N ~ N^(-1/2), and in general, the decay is algebraic, S_N ~ N^(-sigma_m), for large N. We analytically obtain the exponent sigma_3= 1.302931 as root of a transcendental equation. Furthermore, the exponents sigma_m grow with m, and we show that sigma_m ~ m for large m.
Bacteria such as Escherichia coli move about in a series of runs and tumbles: while a run state (straight motion) entails all the flagellar motors spinning in counterclockwise mode, a tumble is caused by a shift in the state of one or more motors to clockwise spinning mode. In the presence of an attractant gradient in the environment, runs in the favourable direction are extended, and this results in a net drift of the organism in the direction of the gradient. The underlying signal transduction mechanism produces directed motion through a bi-lobed response function which relates the clockwise bias of the flagellar motor to temporal changes in the attractant concentration. The two lobes (positive and negative) of the response function are separated by a time interval of $sim 1$s, such that the bacterium effectively compares the concentration at two different positions in space and responds accordingly. We present here a novel path-integral method which allows us to address this problem in the most general way possible, including multi-step CW-CCW transitions, directional persistence and power-law waiting time distributions. The method allows us to calculate quantities such as the effective diffusion coefficient and drift velocity, in a power series expansion in the attractant gradient. Explicit results in the lowest order in the expansion are presented for specific models, which, wherever applicable, agree with the known results. New results for gamma-distributed run interval distributions are also presented.
We study the effect of an applied magnetic field on the nonequilibrium transport properties of a general cubic quantum network described by a tight-binding Hamiltonian with specially designed couplings to the leads that preserve open-system symmetries. We demonstrate that the symmetry of open systems can be manipulated by the direction of the magnetic field. Starting with all the symmetries preserved in absence of a field, the anisotropic and isotropic fields systematically break the symmetries, influencing all nonequilibrium properties. For simple cubic systems, we are able to identify the steady states that comprise of pure states, bath-dependent states (nonequilibrium steady states), and also nonphysical states. As an application, we show numerically for large cubic networks that the symmetry breaking can control nonequilibrium currents and that different environmental interactions can lead to novel features which can be engineered in artificial super-lattices and cold atoms.