No Arabic abstract
We investigate the particle and heat transport in quantum junctions with the geometry of star graphs. The system is in a nonequilibrium steady state, characterized by the different temperatures and chemical potentials of the heat reservoirs connected to the edges of the graph. We explore the Landauer-Buettiker state and its orbit under parity and time reversal transformations. Both particle number and total energy are conserved in these states. However the heat and chemical potential energy are in general not separately conserved, which gives origin to a basic process of energy transmutation among them. We study both directions of this process in detail, introducing appropriate efficiency coefficients. For scale invariant interactions in the junction our results are exact and explicit. They cover the whole parameter space and take into account all nonlinear effects. The energy transmutation depends on the particle statistics.
When noninteracting fermions are confined in a $D$-dimensional region of volume $mathrm{O}(L^D)$ and subjected to a continuous (or piecewise continuous) potential $V$ which decays sufficiently fast with distance, in the thermodynamic limit, the ground state energy of the system does not depend on $V$. Here, we discuss this theorem from several perspectives and derive a proof for radially symmetric potentials valid in $D$ dimensions. We find that this universality property holds under a quite mild condition on $V$, with or without bounded states, and extends to thermal states. Moreover, it leads to an interesting analogy between Andersons orthogonality catastrophe and first-order quantum phase transitions.
We study a model of self propelled particles exhibiting run and tumble dynamics on lattice. This non-Brownian diffusion is characterised by a random walk with a finite persistence length between changes of direction, and is inspired by the motion of bacteria such as E. coli. By defining a class of models with multiple species of particle and transmutation between species we can recreate such dynamics. These models admit exact analytical results whilst also forming a counterpart to previous continuum models of run and tumble dynamics. We solve the externally driven non-interacting and zero-rang
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the overall fluctuations of the dynamics, representing the uncertainties in the past and in the future. A generalized Einstein relation is a consequence solely because the dynamics being stationary; and the Green-Kubo formula reflects a balance between the two mechanisms. Equilibrium with reversibility is characterized by a novel covariance symmetry.
Jarzynskis nonequilibrium work relation can be understood as the realization of the (hidden) time-generator reciprocal symmetry satisfied for the conditional probability function. To show this, we introduce the reciprocal process where the classical probability theory is expressed with real wave functions, and derive a mathematical relation using the symmetry. We further discuss that the descriptions by the standard Markov process from an initial equilibrium state are indistinguishable from those by the reciprocal process. Then the Jarzynski relation is obtained from the mathematical relation for the Markov processes described by the Fokker-Planck, Kramers and relativistic Kramers equations.
We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri, arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki mapping; the method of coherent states; and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in our previous article for the classical systems identified.