Do you want to publish a course? Click here

Observing Quasiparticles through the Entanglement Lens

98   0   0.0 ( 0 )
 Added by Yizhi You
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The low energy physics of interacting quantum systems is typically understood through the identification of the relevant quasiparticles or low energy excitations and their quantum numbers. We present a quantum information framework that goes beyond this to examine the nature of the entanglement in the corresponding quantum states. We argue that the salient features of the quasiparticles, including their quantum numbers, locality and fractionalization are reflected in the entanglement spectrum and in the mutual information. We illustrate these ideas in the specific context of the $d=1$ transverse field Ising model with an integrability breaking perturbation.



rate research

Read More

The study of gapped quantum many-body systems in three spatial dimensions has uncovered the existence of quantum states hosting quasiparticles that are confined, not by energetics but by the structure of local operators, to move along lower dimensional submanifolds. These so-called fracton phases are beyond the usual topological quantum field theory description, and thus require new theoretical frameworks to describe them. Here we consider coupling fracton models to topological quantum field theories in (3+1) dimensions by starting with two copies of a known fracton model and gauging the $mathbb{Z}_2$ symmetry that exchanges the two copies. This yields a class of exactly solvable lattice models that we study in detail for the case of the X-cube model and Haahs cubic code. The resulting phases host finite-energy non-Abelian immobile quasiparticles with robust degeneracies that depend on their relative positions. The phases also host non-Abelian string excitations with robust degeneracies that depend on the string geometry. Applying the construction to Haahs cubic code in particular provides an exactly solvable model with finite energy yet immobile non-Abelian quasiparticles that can only be created at the corners of operators with fractal support.
84 - Bowen Shi , Isaac H. Kim 2020
We study the ground-state entanglement of gapped domain walls between topologically ordered systems in two spatial dimensions. We derive a universal correction to the ground-state entanglement entropy, which is equal to the logarithm of the total quantum dimension of a set of superselection sectors localized on the domain wall. This expression is derived from the recently proposed entanglement bootstrap method.
We study the problem of calculating transport properties of interacting quantum systems, specifically electrical and thermal conductivities, by computing the non-equilibrium steady state (NESS) of the system biased by contacts. Our approach is based on the structure of entanglement in the NESS. With reasonable physical assumptions, we show that a NESS close to local equilibrium is lightly entangled and can be represented via a computationally efficient tensor network. We further argue that the NESS may be found by dynamically evolving the system within a manifold of appropriate low entanglement states. A physically realistic law of dynamical evolution is Markovian open system dynamics, or the Lindblad equation. We explore this approach in a well-studied free fermion model where comparisons with the literature are possible. We study both electrical and thermal currents with and without disorder, and compute entropic quantities such as mutual information and conditional mutual information. We conclude with a discussion of the prospects of this approach for the challenging problem of transport in strongly interacting systems, especially those with disorder.
149 - Bowen Shi , Isaac H. Kim 2020
We develop a theory of gapped domain wall between topologically ordered systems in two spatial dimensions. We find a new type of superselection sector -- referred to as the parton sector -- that subdivides the known superselection sectors localized on gapped domain walls. Moreover, we introduce and study the properties of composite superselection sectors that are made out of the parton sectors. We explain a systematic method to define these sectors, their fusion spaces, and their fusion rules, by deriving nontrivial identities relating their quantum dimensions and fusion multiplicities. We propose a set of axioms regarding the ground state entanglement entropy of systems that can host gapped domain walls, generalizing the bulk axioms proposed in [B. Shi, K. Kato, and I. H. Kim, Ann. Phys. 418, 168164 (2020)]. Similar to our analysis in the bulk, we derive our main results by examining the self-consistency relations of an object called information convex set. As an application, we define an analog of topological entanglement entropy for gapped domain walls and derive its exact expression.
We study quantized non-local order parameters, constructed by using partial time-reversal and partial reflection, for fermionic topological phases of matter in one spatial dimension protected by an orientation reversing symmetry, using topological quantum field theories (TQFTs). By formulating the order parameters in the Hilbert space of state sum TQFT, we establish the connection between the quantized non-local order parameters and the underlying field theory, clarifying the nature of the order parameters as topological invariants. We also formulate several entanglement measures including the entanglement negativity on state sum spin TQFT, and describe the exact correspondence of the entanglement measures to path integrals on a closed surface equipped with a specific spin structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا