Do you want to publish a course? Click here

Non-local Order Parameters and Quantum Entanglement for Fermionic Topological Field Theories

148   0   0.0 ( 0 )
 Added by Ryohei Kobayashi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study quantized non-local order parameters, constructed by using partial time-reversal and partial reflection, for fermionic topological phases of matter in one spatial dimension protected by an orientation reversing symmetry, using topological quantum field theories (TQFTs). By formulating the order parameters in the Hilbert space of state sum TQFT, we establish the connection between the quantized non-local order parameters and the underlying field theory, clarifying the nature of the order parameters as topological invariants. We also formulate several entanglement measures including the entanglement negativity on state sum spin TQFT, and describe the exact correspondence of the entanglement measures to path integrals on a closed surface equipped with a specific spin structure.



rate research

Read More

Topological phases are exotic quantum phases which are lacking the characterization in terms of order parameters. In this paper, we develop a unified framework based on variational iPEPS for the quantitative study of both topological and conventional phase transitions through entanglement order parameters. To this end, we employ tensor networks with suitable physical and/or entanglement symmetries encoded, and allow for order parameters detecting the behavior of any of those symmetries, both physical and entanglement ones. First, this gives rise to entanglement-based order parameters for topological phases. These topological order parameters allow to quantitatively probe topological phase transitions and to identify their universal behavior. We apply our framework to the study of the Toric Code model in different magnetic fields, which in some cases maps to the (2+1)D Ising model. We identify 3D Ising critical exponents for the entire transition, consistent with those special cases and general belief. However, we moreover find an unknown critical exponent beta=0.021. We then apply our framework of entanglement order parameters to conventional phase transitions. We construct a novel type of disorder operator (or disorder parameter), which is non-zero in the disordered phase and measures the response of the wavefunction to a symmetry twist in the entanglement. We numerically evaluate this disorder operator for the (2+1)D transverse field Ising model, where we again recover a critical exponent hitherto unknown in the model, beta=0.024, consistent with the findings for the Toric Code. This shows that entanglement order parameters can provide additional means of characterizing the universal data both at topological and conventional phase transitions, and altogether demonstrates the power of this framework to identify the universal data underlying the transition.
We propose a method of computing and studying entanglement quantities in non-Hermitian systems by use of a biorthogonal basis. We find that the entanglement spectrum characterizes the topological properties in terms of the existence of mid-gap states in the non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry (PT symmetry) and the non-Hermitian Chern insulators. In addition, we find that at a critical point in the PT symmetric SSH model, the entanglement entropy has a logarithmic scaling with corresponding central charge $c=-2$. This critical point then is a free-fermion lattice realization of the non-unitary conformal field theory.
Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing universal topological quantum computation. Recently, the study of topological phases has been extended to 3D and it has been proposed that loop-like extensive objects can also carry fractional statistics. In this work, we systematically study the so-called three-loop braiding statistics for loop-like excitations for 3D fermionic topological phases. Most surprisingly, we discovered new types of non-Abelian three-loop braiding statistics that can only be realized in fermionic systems (or equivalently bosonic systems with fermionic particles). The simplest example of such non-Abelian braiding statistics can be realized in interacting fermionic systems with a gauge group $mathbb{Z}_2 times mathbb{Z}_8$ or $mathbb{Z}_4 times mathbb{Z}_4$, and the physical origin of non-Abelian statistics can be viewed as attaching an open Majorana chain onto a pair of linked loops, which will naturally reduce to the well known Ising non-Abelian statistics via the standard dimension reduction scheme. Moreover, due to the correspondence between gauge theories with fermionic particles and classifying fermionic symmetry-protected topological (FSPT) phases with unitary symmetries, our study also give rise to an alternative way to classify FSPT phases with unitary symmetries. We further compare the classification results for FSPT phases with arbitrary Abelian total symmetry $G^f$ and find systematical agreement with previous studies using other methods. We believe that the proposed framework of understanding three-loop braiding statistics (including both Abelian and non-Abelian cases) in interacting fermion systems applies for generic fermonic topological phases in 3D.
We present a fully many-body formulation of topological invariants for various topological phases of fermions protected by antiunitary symmetry, which does not refer to single particle wave functions. For example, we construct the many-body $mathbb{Z}_2$ topological invariant for time-reversal symmetric topological insulators in two spatial dimensions, which is a many-body counterpart of the Kane-Mele $mathbb{Z}_2$ invariant written in terms of single-particle Bloch wave functions. We show that an important ingredient for the construction of the many-body topological invariants is a fermionic partial transpose which is basically the standard partial transpose equipped with a sign structure to account for anti-commuting property of fermion operators. We also report some basic results on various kinds of pin structures -- a key concept behind our strategy for constructing many-body topological invariants -- such as the obstructions, isomorphism classes, and Dirac quantization conditions.
We compute the topological entanglement entropy for a large set of lattice models in $d$-dimensions. It is well known that many such quantum systems can be constructed out of lattice gauge models. For dimensionality higher than two, there are generalizations going beyond gauge theories, which are called higher gauge theories and rely on higher-order generalizations of groups. Our main concern is a large class of $d$-dimensional quantum systems derived from Abelian higher gauge theories. In this paper, we derive a general formula for the bipartition entanglement entropy for this class of models, and from it we extract both the area law and the sub-leading terms, which explicitly depend on the topology of the entangling surface. We show that the entanglement entropy $S_A$ in a sub-region $A$ is proportional to $log(GSD_{tilde{A}})$, where (GSD_{tilde{A}}) is the ground state degeneracy of a particular restriction of the full model to (A). The quantity $GSD_{tilde{A}}$ can be further divided into a contribution that scales with the size of the boundary $partial A$ and a term which depends on the topology of $partial A$. There is also a topological contribution coming from $A$ itself, that may be non-zero when $A$ has a non-trivial homology. We present some examples and discuss how the topology of $A$ affects the topological entropy. Our formalism allows us to do most of the calculation for arbitrary dimension $d$. The result is in agreement with entanglement calculations for known topological models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا