Do you want to publish a course? Click here

Gauging fractons: immobile non-Abelian quasiparticles, fractals, and position-dependent degeneracies

85   0   0.0 ( 0 )
 Added by Daniel Bulmash
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of gapped quantum many-body systems in three spatial dimensions has uncovered the existence of quantum states hosting quasiparticles that are confined, not by energetics but by the structure of local operators, to move along lower dimensional submanifolds. These so-called fracton phases are beyond the usual topological quantum field theory description, and thus require new theoretical frameworks to describe them. Here we consider coupling fracton models to topological quantum field theories in (3+1) dimensions by starting with two copies of a known fracton model and gauging the $mathbb{Z}_2$ symmetry that exchanges the two copies. This yields a class of exactly solvable lattice models that we study in detail for the case of the X-cube model and Haahs cubic code. The resulting phases host finite-energy non-Abelian immobile quasiparticles with robust degeneracies that depend on their relative positions. The phases also host non-Abelian string excitations with robust degeneracies that depend on the string geometry. Applying the construction to Haahs cubic code in particular provides an exactly solvable model with finite energy yet immobile non-Abelian quasiparticles that can only be created at the corners of operators with fractal support.



rate research

Read More

We discuss the procedure for gauging on-site $mathbb{Z}_2$ global symmetries of three-dimensional lattice Hamiltonians that permute quasi-particles and provide general arguments demonstrating the non-Abelian character of the resultant gauged theories. We then apply this general procedure to lattice models of several well known fracton phases: two copies of the X-Cube model, two copies of Haahs cubic code, and the checkerboard model. Where the former two models possess an on-site $mathbb{Z}_2$ layer exchange symmetry, that of the latter is generated by the Hadamard gate. For each of these models, upon gauging, we find non-Abelian subdimensional excitations, including non-Abelian fractons, as well as non-Abelian looplike excitations and Abelian fully mobile pointlike excitations. By showing that the looplike excitations braid non-trivially with the subdimensional excitations, we thus discover a novel gapped quantum order in 3D, which we term a panoptic fracton order. This points to the existence of parent states in 3D from which both topological quantum field theories and fracton states may descend via quasi-particle condensation. The gauged cubic code model represents the first example of a gapped 3D phase supporting (inextricably) non-Abelian fractons that are created at the corners of fractal operators.
We offer a fractonic perspective on a familiar observation -- a flat sheet of paper can be folded only along a straight line if one wants to avoid the creation of additional creases or tears. Our core underlying technical result is the establishment of a duality between the theory of elastic plates and a fractonic gauge theory with a second rank symmetric electric field tensor, a scalar magnetic field, a vector charge, and a symmetric tensor current. Bending moment and momentum of the plate are dual to the electric and magnetic fields, respectively. While the flexural waves correspond to the quadratically dispersing photon of the gauge theory, a fold defect is dual to its vector charge. Crucially, the fractonic condition constrains the latter to move only along its direction, i.e., the folds growth direction. By contrast, fracton motion in the perpendicular direction amounts to tearing the paper.
Here, we provide a simple Hubbard-like model of spin-$1/2$ fermions that gives rise to the SU(2) symmetric Thirring model that is equivalent, in the low-energy limit, to Yang-Mills-Chern-Simons model. First, we identify the regime that simulates the SU(2) Yang-Mills theory. Then, we suitably extend this model so that it gives rise to the SU(2) level $k$ Chern-Simons theory with $kgeq2$ that can support non-Abelian anyons. This is achieved by introducing multiple fermionic species and modifying the Thirring interactions, while preserving the SU(2) symmetry. Our proposal provides the means to theoretically and experimentally probe non-Abelian SU(2) level $k$ topological phases.
335 - Yi-Ting Tu , Po-Yao Chang 2021
We demonstrate a general gauging procedure of a pure matter theory on a lattice with a mixture of subsystem and global symmetries. This mixed symmetry can be either a semidirect product of a subsystem symmetry and a global symmetry, or a non-trivial extension of them. We demonstrate this gauging procedure on a cubic lattice in three dimensions with four examples: $G=mathbb{Z}_3^{text{sub}} rtimes mathbb{Z}_2^{text{glo}}$, $G=(mathbb{Z}_2^{text{sub}} times mathbb{Z}_2^{text{sub}}) rtimes mathbb{Z}_2^{text{glo}}$, $1to mathbb {Z}_2^text {sub}to Gto mathbb {Z}_2^text {glo}to 1$, and $1to mathbb {Z}_2^text {sub}to Gto K_4^text {glo}to 1$. The former two cases and the last one produce the non-Abelian fracton orders. Our construction of the gauging procedure provides an identification of the electric charges of these fracton orders with irreducible representations of the symmetry. Furthermore, by constraining the local Hilbert space, the magnetic fluxes with different geometry (tube-like and plaquette-like) satisfy a subalgebra of the quantum double models (QDMs). This algebraic structure leads to an identification of the magnetic fluxes to the conjugacy classes of the symmetry.
The low energy physics of interacting quantum systems is typically understood through the identification of the relevant quasiparticles or low energy excitations and their quantum numbers. We present a quantum information framework that goes beyond this to examine the nature of the entanglement in the corresponding quantum states. We argue that the salient features of the quasiparticles, including their quantum numbers, locality and fractionalization are reflected in the entanglement spectrum and in the mutual information. We illustrate these ideas in the specific context of the $d=1$ transverse field Ising model with an integrability breaking perturbation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا