Do you want to publish a course? Click here

A dynamical--topological obstruction for smooth isometric embeddings of Riemannian manifolds via incompressible Euler equations

105   0   0.0 ( 0 )
 Added by Siran Li
 Publication date 2020
  fields
and research's language is English
 Authors Siran Li




Ask ChatGPT about the research

We obtain a dynamical--topological obstruction for the existence of isometric embedding of a Riemannian manifold-with-boundary $(M,g)$: if the first real homology of $M$ is nontrivial, if the centre of the fundamental group is trivial, and if $M$ is isometrically embedded into a Euclidean space of dimension at least $3$, then the isometric embedding must violate a certain dynamical, kinetic energy-related condition (the rigid isotopy extension property in Definition 1.1). The arguments are motivated by the incompressible Euler equations with prescribed initial and terminal configurations in hydrodynamics.



rate research

Read More

255 - Shige Peng , Detang Zhou 2011
In this work we consider viscosity solutions to second order partial differential equations on Riemannian manifolds. We prove maximum principles for solutions to Dirichlet problem on a compact Riemannian manifold with boundary. Using a different method, we generalize maximum principles of Omori and Yau to a viscosity version.
We derive estimates relating the values of a solution at any two points to the distance between the points, for quasilinear isotropic elliptic equations on compact Riemannian manifolds, depending only on dimension and a lower bound for the Ricci curvature. These estimates imply sharp gradient bounds relating the gradient of an arbitrary solution at given height to that of a symmetric solution on a warped product model space. We also discuss the problem on Finsler manifolds with nonnegative weighted Ricci curvature, and on complete manifolds with bounded geometry, including solutions on manifolds with boundary with Dirichlet boundary condition. Particular cases of our results include gradient estimates of Modica type.
Given a Riemannian spin^c manifold whose boundary is endowed with a Riemannian flow, we show that any solution of the basic Dirac equation satisfies an integral inequality depending on geometric quantities, such as the mean curvature and the ONeill tensor. We then characterize the equality case of the inequality when the ambient manifold is a domain of a Kahler-Einstein manifold or a Riemannian product of a Kahler-Einstein manifold with R (or with the circle S^1).
We give a new proof for the local existence of a smooth isometric embedding of a smooth $3$-dimensional Riemannian manifold with nonzero Riemannian curvature tensor into $6$-dimensional Euclidean space. Our proof avoids the sophisticated arguments via microlocal analysis used in earlier proofs. In Part 1, we introduce a new type of system of partial differential equations, which is not one of the standard types (elliptic, hyperbolic, parabolic) but satisfies a property called strong symmetric positivity. Such a PDE system is a generalization of and has properties similar to a system of ordinary differential equations with a regular singular point. A local existence theorem is then established by using a novel local-to-global-to-local approach. In Part 2, we apply this theorem to prove the local existence result for isometric embeddings.
207 - Lei Zhang 2008
Let $(M,g)$ be a complete three dimensional Riemannian manifold with boundary $partial M$. Given smooth functions $K(x)>0$ and $c(x)$ defined on $M$ and $partial M$, respectively, it is natural to ask whether there exist metrics conformal to $g$ so that under these new metrics, $K$ is the scalar curvature and $c$ is the boundary mean curvature. All such metrics can be described by a prescribing curvature equation with a boundary condition. With suitable assumptions on $K$,$c$ and $(M,g)$ we show that all the solutions of the equation can only blow up at finite points over each compact subset of $bar M$, some of them may appear on $partial M$. We describe the asymptotic behavior of the blowup solutions around each blowup point and derive an energy estimate as a consequence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا