Do you want to publish a course? Click here

Rigidity results for Riemannian spin^c manifolds with foliated boundary

129   0   0.0 ( 0 )
 Added by Nicolas Ginoux
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Given a Riemannian spin^c manifold whose boundary is endowed with a Riemannian flow, we show that any solution of the basic Dirac equation satisfies an integral inequality depending on geometric quantities, such as the mean curvature and the ONeill tensor. We then characterize the equality case of the inequality when the ambient manifold is a domain of a Kahler-Einstein manifold or a Riemannian product of a Kahler-Einstein manifold with R (or with the circle S^1).



rate research

Read More

255 - Shige Peng , Detang Zhou 2011
In this work we consider viscosity solutions to second order partial differential equations on Riemannian manifolds. We prove maximum principles for solutions to Dirichlet problem on a compact Riemannian manifold with boundary. Using a different method, we generalize maximum principles of Omori and Yau to a viscosity version.
207 - Lei Zhang 2008
Let $(M,g)$ be a complete three dimensional Riemannian manifold with boundary $partial M$. Given smooth functions $K(x)>0$ and $c(x)$ defined on $M$ and $partial M$, respectively, it is natural to ask whether there exist metrics conformal to $g$ so that under these new metrics, $K$ is the scalar curvature and $c$ is the boundary mean curvature. All such metrics can be described by a prescribing curvature equation with a boundary condition. With suitable assumptions on $K$,$c$ and $(M,g)$ we show that all the solutions of the equation can only blow up at finite points over each compact subset of $bar M$, some of them may appear on $partial M$. We describe the asymptotic behavior of the blowup solutions around each blowup point and derive an energy estimate as a consequence.
94 - Rirong Yuan 2021
In this article we study a class of prescribed curvature problems on complete noncompact Riemannian manifolds. To be precise, we derive local $C^0$-estimate under an asymptotic condition which is in effect optimal, and prove the existence of complete conformal metrics with prescribed curvature functions. A key ingredient of our strategy is Aviles-McOwens result or its fully nonlinear version on the existence of complete conformal metrics with prescribed curvature functions on manifolds with boundary.
We study the index of the APS boundary value problem for a strongly Callias-type operator $D$ on a complete even dimensional Riemannian manifold $M$ (the odd dimensional case was considered in our previous paper arXiv:1706.06737). We use this index to define the relative $eta$-invariant $eta(A_1,A_0)$ of two strongly Callias-type operators, which are equal outside of a compact set. Even though in our situation the $eta$-invariants of $A_1$ and $A_0$ are not defined, the relative $eta$-invariant behaves as if it were the difference $eta(A_1)-eta(A_0)$. We also define the spectral flow of a family of such operators and use it compute the variation of the relative $eta$-invariant.
We generalize a Bernstein-type result due to Albujer and Alias, for maximal surfaces in a curved Lorentzian product 3-manifold of the form $Sigma_1times mathbb{R}$, to higher dimension and codimension. We consider $M$ a complete spacelike graphic submanifold with parallel mean curvature, defined by a map $f: Sigma_1to Sigma_2$ between two Riemannian manifolds $(Sigma_1^m, g_1)$ and $(Sigma^n_2, g_2)$ of sectional curvatures $K_1$ and $K_2$, respectively. We take on $Sigma_1times Sigma_2$ the pseudo-Riemannian product metric $g_1-g_2$. Under the curvature conditions, $mathrm{Ricci}_1 geq 0$ and $K_1geq K_2$, we prove that, if the second fundamental form of $M$ satisfies an integrability condition, then $M$ is totally geodesic, and it is a slice if $mathrm{Ricci}_1(p)>0$ at some point. For bounded $K_1$, $K_2$ and hyperbolic angle $theta$, we conclude $M$ must be maximal. If $M$ is a maximal surface and $K_1geq K_2^+$, we show $M$ is totally geodesic with no need for further assumptions. Furthermore, $M$ is a slice if at some point $pin Sigma_1$, $K_1(p)> 0$, and if $Sigma_1$ is flat and $K_2<0$ at some point $f(p)$, then the image of $f$ lies on a geodesic of $Sigma_2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا