Do you want to publish a course? Click here

Prescribing curvatures on three dimensional Riemannian manifolds with boundaries

208   0   0.0 ( 0 )
 Added by Lei Zhang
 Publication date 2008
  fields
and research's language is English
 Authors Lei Zhang




Ask ChatGPT about the research

Let $(M,g)$ be a complete three dimensional Riemannian manifold with boundary $partial M$. Given smooth functions $K(x)>0$ and $c(x)$ defined on $M$ and $partial M$, respectively, it is natural to ask whether there exist metrics conformal to $g$ so that under these new metrics, $K$ is the scalar curvature and $c$ is the boundary mean curvature. All such metrics can be described by a prescribing curvature equation with a boundary condition. With suitable assumptions on $K$,$c$ and $(M,g)$ we show that all the solutions of the equation can only blow up at finite points over each compact subset of $bar M$, some of them may appear on $partial M$. We describe the asymptotic behavior of the blowup solutions around each blowup point and derive an energy estimate as a consequence.



rate research

Read More

255 - Shige Peng , Detang Zhou 2011
In this work we consider viscosity solutions to second order partial differential equations on Riemannian manifolds. We prove maximum principles for solutions to Dirichlet problem on a compact Riemannian manifold with boundary. Using a different method, we generalize maximum principles of Omori and Yau to a viscosity version.
Given a Riemannian spin^c manifold whose boundary is endowed with a Riemannian flow, we show that any solution of the basic Dirac equation satisfies an integral inequality depending on geometric quantities, such as the mean curvature and the ONeill tensor. We then characterize the equality case of the inequality when the ambient manifold is a domain of a Kahler-Einstein manifold or a Riemannian product of a Kahler-Einstein manifold with R (or with the circle S^1).
191 - Martin Mayer 2019
The problem of prescribing conformally the scalar curvature of a closed Riemannian manifold as a given Morse function reduces to solving an elliptic partial differential equation with critical Sobolev exponent. Two ways of attacking this problem consist in subcritical approximations or negative pseudo gradient flows. We show under a mild none degeneracy assumption the equivalence of both approaches with respect to zero weak limits, in particular an one to one correspondence of zero weak limit finite energy subcritical blow-up solutions, zero weak limit critical points at infinity of negative type and sets of critical points with negative Laplacian of the function to be prescribed.
78 - Martin Mayer 2021
Given a closed manifold of positive Yamabe invariant and for instance positive Morse functions upon it, the conformally prescribed scalar curvature problem raises the question, whether or not such functions can by conformally changing the metric be realised as the scalar curvature of this manifold. As we shall quantify depending on the shape and structure of such functions, every lack of a solution for some candidate function leads to existence of energetically uniformly bounded solutions for entire classes of related candidate functions.
In this paper, we prove that the deformed Riemannian extension of any affine Szabo manifold is a Szabo pseudo-Riemannian metric and vice-versa. We proved that the Ricci tensor of an affine surface is skew-symmetric and nonzero everywhere if and only if the affine surface is Szabo. We also find the necessary and sufficient condition for the affine Szabo surface to be recurrent. We prove that for an affine Szabo recurrent surface the recurrence covector of a recurrence tensor is not locally a gradient.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا