Do you want to publish a course? Click here

Dynamics of reversed shear Alfven eigenmode and energetic particles during current ramp-up

246   0   0.0 ( 0 )
 Added by Tao Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hybrid MHD-gyrokinetic code simulations are used to investigate the dynamics of frequency sweeping reversed shear Alfven eigenmode (RSAE) strongly driven by energetic particles (EPs) during plasma current ramp-up in a conventional tokamak configuration. A series of weakly reversed shear equilibria representing time slices of long timescale MHD equilibrium evolution is considered, where the self-consistent RSAE-EP resonant interactions on the short timescale are analyzed in detail. Both linear and nonlinear RSAE dynamics are shown to be subject to the non-perturbative effect of EPs by maximizing wave-EP power transfer. In linear stage, EPs induce evident mode structure and frequency shifts; meanwhile, RSAE saturates by radial decoupling with resonant EPs due to weak magnetic shear, and gives rise to global EP convective transport and non-adiabatic frequency chirping. The spatiotemporal scales of phase space wave-EP interactions are characterized by the perpendicular wavelength and wave-particle trapping time. The simulations provide insights into general as well as specific features of RSAE spectra and EP transport from experimental observations, and illustrate the fundamental physics of wave-EP resonant interaction with the interplay of magnetic geometry, plasma non-uniformity and non-perturbative EPs.



rate research

Read More

Two novel nonlinear mode coupling processes for reversed shear Alfven eigenmode (RSAE) nonlinear saturation are proposed and investigated. In the first process, RSAE nonlinearly couples to a co-propagating toroidal Alfven eigenmode (TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode (GAM). In the second process, RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode (IAW). The condition for the two processes to occur is favored during current ramp. Both processes contribute to effectively saturate the Alfvenic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.
General nonlinear equations describing reversed shear Alfven eigenmode (RSAE) self-modulation via zero frequency zonal structure (ZFZS) generation are derived using nonlinear gyrokinetic theory, which are then applied to study the spontaneous ZFZS excitation as well as RSAE nonlinear saturation. It is found that both electrostatic zonal flow (ZF) and electromagnetic zonal current (ZC) can be preferentially excited by finite amplitude RSAE, depending on specific plasma parameters. The modification to local shear Alfven wave continuum is evaluated using the derived saturation level of ZC, which is shown to play a comparable role in saturating RSAE with the ZFZS scattering.
Zero frequency zonal flow (ZFZF) excitation by trapped energetic electron driven beta-induced Alfven eigenmode (eBAE) is investigated using nonlinear gyrokinetic theory. It is found that, during the linear growth stage of eBAE, resonant energetic electrons (EEs) not only effectively drive eBAE unstable, but also contribute to the nonlinear coupling, leading to ZFZF excitation. The trapped EE contribution to ZFZF generation is dominated by EE responses to eBAE in the ideal region, and is comparable to thermal plasma contribution to Reynolds and Maxwell stresses.
Nonlinear saturation of toroidal Alfven eigenmode (TAE) via ion induced scatterings is investigated in the short-wavelength gyrokinetic regime. It is found that the nonlinear evolution depends on the thermal ion b{eta} value. Here, b{eta} is the plasma thermal to magnetic pressure ratio. Both the saturation levels and associated energetic-particle transport coefficients are derived and estimated correspondingly.
Alfven Eigenmodes (AE) can be destabilized during ITER discharges driven by neutral beam injection (NBI) energetic particles (EP) and alpha particles. The aim of the present study is to analyze the AE stability of different ITER operation scenarios considering multiple energetic particle species. We use the reduced magneto-hydrodynamic (MHD) equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species including the effect of the acoustic modes. The AEs driven by the NBI EP and alpha particles are stable in the configurations analyzed, only MHD-like modes with large toroidal couplings are unstable, although both can be destabilized if the EP beta increases above a threshold. The threshold is two times the model beta value for the NBI EP and alpha particles in the reverse shear case, leading to the destabilization of Beta induced AE (BAE) near the magnetic axis with a frequency of 25-35 kHz and Toroidal or Elliptical AE (TAE/EAE) in the reverse shear region with a frequency of 125-175 kHz, respectively. On the other hand, the hybrid and steady state configurations show a threshold 3 times larger with respect to the model beta for the alpha particle and 40 times for the NBI EP, also destabilizing BAE and TAE between the inner and middle plasma region. In addition, a extended analysis of the reverse shear scenario where the beta of both alpha particles and NBI EP are above the AE threshold, multiple EP damping effects are also identified as well as optimization trends regarding the resonance properties of the alpha particle and NBI EP with the bulk plasma.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا