No Arabic abstract
Alfven Eigenmodes (AE) can be destabilized during ITER discharges driven by neutral beam injection (NBI) energetic particles (EP) and alpha particles. The aim of the present study is to analyze the AE stability of different ITER operation scenarios considering multiple energetic particle species. We use the reduced magneto-hydrodynamic (MHD) equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species including the effect of the acoustic modes. The AEs driven by the NBI EP and alpha particles are stable in the configurations analyzed, only MHD-like modes with large toroidal couplings are unstable, although both can be destabilized if the EP beta increases above a threshold. The threshold is two times the model beta value for the NBI EP and alpha particles in the reverse shear case, leading to the destabilization of Beta induced AE (BAE) near the magnetic axis with a frequency of 25-35 kHz and Toroidal or Elliptical AE (TAE/EAE) in the reverse shear region with a frequency of 125-175 kHz, respectively. On the other hand, the hybrid and steady state configurations show a threshold 3 times larger with respect to the model beta for the alpha particle and 40 times for the NBI EP, also destabilizing BAE and TAE between the inner and middle plasma region. In addition, a extended analysis of the reverse shear scenario where the beta of both alpha particles and NBI EP are above the AE threshold, multiple EP damping effects are also identified as well as optimization trends regarding the resonance properties of the alpha particle and NBI EP with the bulk plasma.
The aim of this study is to analyze the stability of the Alfven eigenmodes (AE) in the Chinese First Quasi-axisymmetric Stellarator (CFQS). The AE stability is calculated using the code FAR3d that solves the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moment for the energetic particles (EP) species including the effect of the helical couplings and acoustic modes. The Landau damping and resonant destabilization effects are added in the model by a given closure relation. The simulation results indicate the destabilization of n = 1 to 4 AEs by EP during the slowing down process, particularly n = 1 and n = 2 toroidal AEs (TAE), n = 3 elliptical AE (EAE) and n = 4 non circular AE (NAE). If the resonance is caused by EPs with an energy above 17 keV (weakly thermalized EP), n = 2 EAEs and n = 3 NAEs are unstable. On the other hand, EPs with an energy below 17 keV (late thermalization stage) lead to the destabilization of n = 3 and n = 4 TAEs. The simulations for an off-axis NBI injection indicate the further destabilization of n = 2 to 4 AEs although the growth rate of the n = 1 AEs slightly decreases, so no clear optimization trend with respect to the NBI deposition region is identified. In addition, n = 2, 4 helical AE (HAE) are unstable above an EP b{eta} threshold. Also, if the thermal b{eta} of the simulation increases (higher thermal plasma density) the AE stability of the plasma improves. The simulations including the effect of the finite Larmor radius and electron-ion Landau damping show the stabilization of the n = 1 to 4 EAE/NAEs as well as a decrease of the growth rate and frequency of the n = 1 to 4 BAE/TAEs.
Two novel nonlinear mode coupling processes for reversed shear Alfven eigenmode (RSAE) nonlinear saturation are proposed and investigated. In the first process, RSAE nonlinearly couples to a co-propagating toroidal Alfven eigenmode (TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode (GAM). In the second process, RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode (IAW). The condition for the two processes to occur is favored during current ramp. Both processes contribute to effectively saturate the Alfvenic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.
The aim of the present study is to perform a theoretical analysis of different strategies to stabilize energetic-ion-driven resistive interchange mode (EIC) in LHD plasma. We use a reduced MHD for the thermal plasma coupled with a gyrofluid model for the energetic particles (EP) species. The hellically trapped EP component is introduced through a modification of the drift frequency to include their precessional drift. The stabilization trends of the 1/1 EIC observed experimentally with respect to the thermal plasma density and temperature are reproduced by the simulations, showing a reasonable agreement with the data. The LHD operation scenarios with stable 1/1 EIC are identified, leading to the stabilization of the 1/1 EIC if the thermal plasma density and temperature are above a given threshold. The 1/1 EIC are also stabilized if the rotational transform is modified in a way that the 1/1 rational surface is located further away than 0.9 times the normalized radius, or the magnetic shear in the plasma periphery is enhanced. Also, LHD discharges with large magnetic fields show a higher EIC destabilization threshold with respect to the thermal plasma density. If the perpendicular NBI deposition region is moved further inward than 0.875 times the normalized radius the 1/1 EIC are also stabilized. In addition, increasing the perpendicular NBI voltage such that the EP energy is higher than 30 keV stabilizes the 1/1 EIC. Moreover, Deuterium plasmas show a higher stability threshold for the 1/1 EIC than Hydrogen plasmas. The experimental data shows a larger time interval between EIC events as the power of the tangential NBI is increased providing that the perpendicular NBI power is at least 13 MW. This implies a stabilizing effect of the tangential NBI.
The aim of this study is to perform a theoretical analysis of the magnetohydrodynamic (MHD) stability and energetic particle effects on a LHD equilibria, calculated during a discharge where energetic-ion-driven resistive interchange mode (EIC) events were triggered. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species. We add the Landau damping and resonant destabilization effects using a closure relation. The simulations suggest that the helically trapped EP driven by the perpendicular neutral beam injector (NBI) further destabilizes the 1/1 MHD-like mode located at the plasma periphery (r/a = 0.88). If the beta of the EP driven by the perpendicular NBI is larger than 0.0025 a 1/1 EIC with a frequency around 3 kHz is destabilized. If the effect of the passing EP driven by the tangential NBI is included on the model, any enhancement of the injection intensity of the tangential NBI below beta=0.025 leads to a decrease of the instability growth rate. The simulations indicate that the perpendicular NBI EP is the main driver of the EIC events, as it was observed in the experiment. If the effect of the helical couplings are added in the model, an 11/13 EIC is destabilized with a frequency around 9 kHz, inward shifted (r/a = 0.81) compared to the 1/1 EIC. Thus, one possible explanation for the EIC frequency chirping down from 9 to 3 kHz is a transition between the 11/13 to the 1/1 EIC due to a weakening of the destabilizing effect of the high n modes, caused by a decrease of the EP drive due to a loss of helically trapped EP or a change in the EP distribution function after the EIC burst.
Linear and nonlinear modelling of Alfvenic instabilities, most notably toroidal Alfven eigenmodes (TAEs), obtained by using the global nonlinear electromagnetic gyrokinetic model of the code ORB5 are presented for the 15 MA scenario of the ITER tokamak. Linear simulations show that elliptic Alfven eigenmodes and odd-parity TAEs are only weakly damped but not excited by alpha particles, whose drive favours even-parity TAEs. Low mode number TAEs are found to be global, requiring global treatment. Nonlinearly, even with double the nominal EP density, single mode simulations lead to saturation with negligible EP transport however multi-mode simulations predict that with double the nominal EP density, enhanced saturation and significant EP redistribution will occur.