No Arabic abstract
Zero frequency zonal flow (ZFZF) excitation by trapped energetic electron driven beta-induced Alfven eigenmode (eBAE) is investigated using nonlinear gyrokinetic theory. It is found that, during the linear growth stage of eBAE, resonant energetic electrons (EEs) not only effectively drive eBAE unstable, but also contribute to the nonlinear coupling, leading to ZFZF excitation. The trapped EE contribution to ZFZF generation is dominated by EE responses to eBAE in the ideal region, and is comparable to thermal plasma contribution to Reynolds and Maxwell stresses.
We show that zonal flow can be preferentially excited by intermediate-scale toroidal electron temperature gradient (ETG) turbulence in tokamak plasmas. Previous theoretical studies that yielded an opposite conclusion assumed a fluid approximation for ETG modes. Here, we carry out a gyrokinetic analysis which ultimately yields a nonlinear Schr{o}dinger equation for the ETG dynamics with a Navier-Stokes type nonlinearity. For typical tokamak parameters, it is found that zonal flow generation plays an important role in the intermediate-scale ETG turbulence. This finding offers an explanation for recent multi-scale gyrokinetic simulations.
General nonlinear equations describing reversed shear Alfven eigenmode (RSAE) self-modulation via zero frequency zonal structure (ZFZS) generation are derived using nonlinear gyrokinetic theory, which are then applied to study the spontaneous ZFZS excitation as well as RSAE nonlinear saturation. It is found that both electrostatic zonal flow (ZF) and electromagnetic zonal current (ZC) can be preferentially excited by finite amplitude RSAE, depending on specific plasma parameters. The modification to local shear Alfven wave continuum is evaluated using the derived saturation level of ZC, which is shown to play a comparable role in saturating RSAE with the ZFZS scattering.
Hybrid MHD-gyrokinetic code simulations are used to investigate the dynamics of frequency sweeping reversed shear Alfven eigenmode (RSAE) strongly driven by energetic particles (EPs) during plasma current ramp-up in a conventional tokamak configuration. A series of weakly reversed shear equilibria representing time slices of long timescale MHD equilibrium evolution is considered, where the self-consistent RSAE-EP resonant interactions on the short timescale are analyzed in detail. Both linear and nonlinear RSAE dynamics are shown to be subject to the non-perturbative effect of EPs by maximizing wave-EP power transfer. In linear stage, EPs induce evident mode structure and frequency shifts; meanwhile, RSAE saturates by radial decoupling with resonant EPs due to weak magnetic shear, and gives rise to global EP convective transport and non-adiabatic frequency chirping. The spatiotemporal scales of phase space wave-EP interactions are characterized by the perpendicular wavelength and wave-particle trapping time. The simulations provide insights into general as well as specific features of RSAE spectra and EP transport from experimental observations, and illustrate the fundamental physics of wave-EP resonant interaction with the interplay of magnetic geometry, plasma non-uniformity and non-perturbative EPs.
Two novel nonlinear mode coupling processes for reversed shear Alfven eigenmode (RSAE) nonlinear saturation are proposed and investigated. In the first process, RSAE nonlinearly couples to a co-propagating toroidal Alfven eigenmode (TAE) with the same toroidal and poloidal mode numbers, and generates a geodesic acoustic mode (GAM). In the second process, RSAE couples to a counter-propagating TAE and generates an ion acoustic wave quasi-mode (IAW). The condition for the two processes to occur is favored during current ramp. Both processes contribute to effectively saturate the Alfvenic instabilities, as well as nonlinearly transfer of energy from energetic fusion alpha particles to fuel ions in burning plasmas.
In tokamak plasmas, the interaction among the micro-turbulence, zonal flows (ZFs) and energetic particles (EPs) can affect the turbulence saturation level and the consequent confinement quality and thus, is important for future burning plasmas. In this work, the EP anisotropy effects on the ZF residual level are studied by using anisotropic EP distributions with dependence on pitch. Significant effects on the long wavelength ZFs have been found when small to moderate width around the dominant pitch in the EP distribution function is assumed. In addition, it is found that ZF residual level is enhanced by barely passing/trapped and/or deeply trapped EPs, but it is suppressed by well passing and/or intermediate trapped EPs. Numerical calculation shows that for ASDEX Upgrade plasmas, typical EP distribution functions can bring in -3%~+5.5% mitigation/enhancement in ZF residual level, depending on the EP distribution functions.