No Arabic abstract
Outlier detection is an important data mining task with numerous practical applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with big data, the process of building a powerful deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Although Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we firstly design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controllers internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.
Given an unsupervised outlier detection (OD) task on a new dataset, how can we automatically select a good outlier detection method and its hyperparameter(s) (collectively called a model)? Thus far, model selection for OD has been a black art; as any model evaluation is infeasible due to the lack of (i) hold-out data with labels, and (ii) a universal objective function. In this work, we develop the first principled data-driven approach to model selection for OD, called MetaOD, based on meta-learning. MetaOD capitalizes on the past performances of a large body of detection models on existing outlier detection benchmark datasets, and carries over this prior experience to automatically select an effective model to be employed on a new dataset without using any labels. To capture task similarity, we introduce specialized meta-features that quantify outlying characteristics of a dataset. Through comprehensive experiments, we show the effectiveness of MetaOD in selecting a detection model that significantly outperforms the most popular outlier detectors (e.g., LOF and iForest) as well as various state-of-the-art unsupervised meta-learners while being extremely fast. To foster reproducibility and further research on this new problem, we open-source our entire meta-learning system, benchmark environment, and testbed datasets.
When performing imitation learning from expert demonstrations, distribution matching is a popular approach, in which one alternates between estimating distribution ratios and then using these ratios as rewards in a standard reinforcement learning (RL) algorithm. Traditionally, estimation of the distribution ratio requires on-policy data, which has caused previous work to either be exorbitantly data-inefficient or alter the original objective in a manner that can drastically change its optimum. In this work, we show how the original distribution ratio estimation objective may be transformed in a principled manner to yield a completely off-policy objective. In addition to the data-efficiency that this provides, we are able to show that this objective also renders the use of a separate RL optimization unnecessary.Rather, an imitation policy may be learned directly from this objective without the use of explicit rewards. We call the resulting algorithm ValueDICE and evaluate it on a suite of popular imitation learning benchmarks, finding that it can achieve state-of-the-art sample efficiency and performance.
This paper proposes Self-Imitation Learning (SIL), a simple off-policy actor-critic algorithm that learns to reproduce the agents past good decisions. This algorithm is designed to verify our hypothesis that exploiting past good experiences can indirectly drive deep exploration. Our empirical results show that SIL significantly improves advantage actor-critic (A2C) on several hard exploration Atari games and is competitive to the state-of-the-art count-based exploration methods. We also show that SIL improves proximal policy optimization (PPO) on MuJoCo tasks.
Outlier detection is an important task for various data mining applications. Current outlier detection techniques are often manually designed for specific domains, requiring large human efforts of database setup, algorithm selection, and hyper-parameter tuning. To fill this gap, we present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support, which automatically optimizes an outlier detection pipeline for a new data source at hand. Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space. PyODDS enables end-to-end executions based on an Apache Spark backend server and a light-weight database. It also provides unified interfaces and visualizations for users with or without data science or machine learning background. In particular, we demonstrate PyODDS on several real-world datasets, with quantification analysis and visualization results.
Continuous-time event sequences represent discrete events occurring in continuous time. Such sequences arise frequently in real-life. Usually we expect the sequences to follow some regular pattern over time. However, sometimes these patterns may be interrupted by unexpected absence or occurrences of events. Identification of these unexpected cases can be very important as they may point to abnormal situations that need human attention. In this work, we study and develop methods for detecting outliers in continuous-time event sequences, including unexpected absence and unexpected occurrences of events. Since the patterns that event sequences tend to follow may change in different contexts, we develop outlier detection methods based on point processes that can take context information into account. Our methods are based on Bayesian decision theory and hypothesis testing with theoretical guarantees. To test the performance of the methods, we conduct experiments on both synthetic data and real-world clinical data and show the effectiveness of the proposed methods.