Do you want to publish a course? Click here

Automating Outlier Detection via Meta-Learning

218   0   0.0 ( 0 )
 Added by Yue Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Given an unsupervised outlier detection (OD) task on a new dataset, how can we automatically select a good outlier detection method and its hyperparameter(s) (collectively called a model)? Thus far, model selection for OD has been a black art; as any model evaluation is infeasible due to the lack of (i) hold-out data with labels, and (ii) a universal objective function. In this work, we develop the first principled data-driven approach to model selection for OD, called MetaOD, based on meta-learning. MetaOD capitalizes on the past performances of a large body of detection models on existing outlier detection benchmark datasets, and carries over this prior experience to automatically select an effective model to be employed on a new dataset without using any labels. To capture task similarity, we introduce specialized meta-features that quantify outlying characteristics of a dataset. Through comprehensive experiments, we show the effectiveness of MetaOD in selecting a detection model that significantly outperforms the most popular outlier detectors (e.g., LOF and iForest) as well as various state-of-the-art unsupervised meta-learners while being extremely fast. To foster reproducibility and further research on this new problem, we open-source our entire meta-learning system, benchmark environment, and testbed datasets.



rate research

Read More

We study few-shot acoustic event detection (AED) in this paper. Few-shot learning enables detection of new events with very limited labeled data. Compared to other research areas like computer vision, few-shot learning for audio recognition has been under-studied. We formulate few-shot AED problem and explore different ways of utilizing traditional supervised methods for this setting as well as a variety of meta-learning approaches, which are conventionally used to solve few-shot classification problem. Compared to supervised baselines, meta-learning models achieve superior performance, thus showing its effectiveness on generalization to new audio events. Our analysis including impact of initialization and domain discrepancy further validate the advantage of meta-learning approaches in few-shot AED.
Majority of the modern meta-learning methods for few-shot classification tasks operate in two phases: a meta-training phase where the meta-learner learns a generic representation by solving multiple few-shot tasks sampled from a large dataset and a testing phase, where the meta-learner leverages its learnt internal representation for a specific few-shot task involving classes which were not seen during the meta-training phase. To the best of our knowledge, all such meta-learning methods use a single base dataset for meta-training to sample tasks from and do not adapt the algorithm after meta-training. This strategy may not scale to real-world use-cases where the meta-learner does not potentially have access to the full meta-training dataset from the very beginning and we need to update the meta-learner in an incremental fashion when additional training data becomes available. Through our experimental setup, we develop a notion of incremental learning during the meta-training phase of meta-learning and propose a method which can be used with multiple existing metric-based meta-learning algorithms. Experimental results on benchmark dataset show that our approach performs favorably at test time as compared to training a model with the full meta-training set and incurs negligible amount of catastrophic forgetting
Outlier detection is an important data mining task with numerous practical applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with big data, the process of building a powerful deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Although Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we firstly design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controllers internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.
Outlier detection is an important task for various data mining applications. Current outlier detection techniques are often manually designed for specific domains, requiring large human efforts of database setup, algorithm selection, and hyper-parameter tuning. To fill this gap, we present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support, which automatically optimizes an outlier detection pipeline for a new data source at hand. Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space. PyODDS enables end-to-end executions based on an Apache Spark backend server and a light-weight database. It also provides unified interfaces and visualizations for users with or without data science or machine learning background. In particular, we demonstrate PyODDS on several real-world datasets, with quantification analysis and visualization results.
Network anomaly detection aims to find network elements (e.g., nodes, edges, subgraphs) with significantly different behaviors from the vast majority. It has a profound impact in a variety of applications ranging from finance, healthcare to social network analysis. Due to the unbearable labeling cost, existing methods are predominately developed in an unsupervised manner. Nonetheless, the anomalies they identify may turn out to be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies of interest. Hence, it is critical to investigate and develop few-shot learning for network anomaly detection. In real-world scenarios, few labeled anomalies are also easy to be accessed on similar networks from the same domain as of the target network, while most of the existing works omit to leverage them and merely focus on a single network. Taking advantage of this potential, in this work, we tackle the problem of few-shot network anomaly detection by (1) proposing a new family of graph neural networks -- Graph Deviation Networks (GDN) that can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network; and (2) equipping the proposed GDN with a new cross-network meta-learning algorithm to realize few-shot network anomaly detection by transferring meta-knowledge from multiple auxiliary networks. Extensive evaluations demonstrate the efficacy of the proposed approach on few-shot or even one-shot network anomaly detection.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا