Do you want to publish a course? Click here

Magnetic order and transport in a spin-fermion model on a superlattice

123   0   0.0 ( 0 )
 Added by Sabyasachi Tarat
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a spin-fermion model consisting of free electrons coupled to classical spins, where the latter are embedded in a quasi one-dimensional superlattice structure consisting of spin blocks separated by spinless buffers. Using a spiral ansatz for the spins, we study the effect of the electron mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction on the $T=0$ ground state of the system. We find that the RKKY interaction can lead to ferromagnetic, antiferromagnetic, or intermediate spiral phases for different system parameters. When the width is much larger than the length of the individual blocks, the spiral phases are suppressed, and the ground state oscillates between ferromagnetic and antiferromagnetic order as the size of the buffer regions is varied. This is accompanied by a corresponding oscillation in the Drude weight reflecting an increased conductivity in the ferromagnetic state compared to the antiferromagnetic one. These results are reminiscent of classic giant magnetoresistance phenomena observed in a similar geometry of thin, sandwiched magnetic and non-magnetic layers. Our analysis provides a robust framework for understanding the role of the RKKY interaction on the ground state order and corresponding transport properties of such systems, extending beyond the conventional perturbative regime.

rate research

Read More

We report the results of muon-spin spectroscopy ($mu^+$SR) measurements on the staggered molecular spin chain [pym-Cu(NO$_3$)$_2$(H$_2$O)$_2$] (pym = pyrimidine), a material previously described using sine-Gordon field theory. Zero-field $mu^+$SR reveals a long range magnetically-ordered ground state below a transition temperature $T_mathrm{N}=0.22(1)$ K. Using longitudinal-field (LF) $mu^+$SR we investigate the dynamic response in applied magnetic fields $0< B < 500$ mT and find evidence for ballistic spin transport. Our LF $mu^+$SR measurements on the chiral spin chain [Cu(pym)(H$_2$O)$_4$]SiF$_6 cdot $H$_2$O instead demonstrate one-dimensional spin diffusion and the distinct spin transport in these two systems likely reflects differences in their magnetic excitations.
We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random phase approximation (RPA) for four different ordered phases, observed in the parameter space of the model: antiferomagnetic, stripe, ferromagnetic, and zigzag phases. The N{e}el temperature and temperature dependence of the sublattice magnetization are compared with the experimental data on Na2IrO3.
$rm CePt_3Si$ is a novel heavy fermion superconductor, crystallising in the $rm CePt_3B$ structure as a tetragonally distorted low symmetry variant of the $rm AuCu_3$ structure type. $rm CePt_3Si$ exhibits antiferromagnetic order at $T_N approx 2.2$ K and enters into a heavy fermion superconducting state at $T_c approx 0.75$ K. Large values of $H_{c2} approx -8.5$ T/K and $H_{c2}(0) approx 5$ T refer to heavy quasiparticles forming Cooper pairs. Hitherto, $rm CePt_3Si$ is the first heavy fermion superconductor without a center of symmetry.
We study the ground-state properties of a spin-1 Heisenberg model on the square lattice with the first and second nearest-neighbor antiferromagnetic couplings $J_1$, $J_2$ and a three-spin scalar chirality term $J_chi$. Using the density matrix renormalization group calculation, we map out a global phase diagram including various magnetic order phases and an emergent quantum spin liquid phase. The nature of the spin liquid is identified as a bosonic non-Abelian Moore-Read state by the fingerprint of the entanglement spectra and identification of a full set of topological sectors. We further unveil a stripe magnetic order coexisting with this spin liquid. Our results not only establish a rare example of non-Abelian spin liquids in simple spin systems, but also demonstrate the coexistence of fractionalized excitations and magnetic order beyond mean-field descriptions.
278 - R. Mondaini , T. Paiva , 2014
We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant $J$ interact with the electronic spins of several adjoining metallic sheets via a coupling $J_H$. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic ($J>0$) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case ($J<0$) the metallic degrees of freedom reduce the ordering temperature. In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on $J_H$. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا