Do you want to publish a course? Click here

Magnetic order and ballistic spin transport in a sine-Gordon spin chain

82   0   0.0 ( 0 )
 Added by Benjamin Huddart
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of muon-spin spectroscopy ($mu^+$SR) measurements on the staggered molecular spin chain [pym-Cu(NO$_3$)$_2$(H$_2$O)$_2$] (pym = pyrimidine), a material previously described using sine-Gordon field theory. Zero-field $mu^+$SR reveals a long range magnetically-ordered ground state below a transition temperature $T_mathrm{N}=0.22(1)$ K. Using longitudinal-field (LF) $mu^+$SR we investigate the dynamic response in applied magnetic fields $0< B < 500$ mT and find evidence for ballistic spin transport. Our LF $mu^+$SR measurements on the chiral spin chain [Cu(pym)(H$_2$O)$_4$]SiF$_6 cdot $H$_2$O instead demonstrate one-dimensional spin diffusion and the distinct spin transport in these two systems likely reflects differences in their magnetic excitations.

rate research

Read More

Thermodynamic properties and elementary excitations in $S=1/2$ one-dimensional Heisenberg antiferromagnet KCuGaF$_6$ were investigated by magnetic susceptibility, specific heat and ESR measurements. Due to the Dzyaloshinsky-Moriya interaction with alternating $D$-vectors and/or the staggered $g$-tensor, the staggered magnetic field is induced when subjected to external magnetic field. Specific heat in magnetic field clearly shows the formation of excitation gap, which is attributed to the staggered magnetic field. The specific heat data was analyzed on the basis of the quantum sine-Gordon (SG) model. We observed many ESR modes including one soliton and three breather excitations characteristic of the quantum SG model.
71 - L.Capogna , M. Mayr , P. Horsch 2004
We report susceptibility, specific heat, and neutron diffraction measurements on NaCu$_2$O$_2$, a spin-1/2 chain compound isostructural to LiCu$_2$O$_2$, which has been extensively investigated. Below 13 K, we find a long-range ordered, incommensurate magnetic helix state with a propagation vector similar to that of LiCu$_2$O$_2$. In contrast to the Li analogue, substitutional disorder is negligible in NaCu$_2$O$_2$. We can thus rule out that the helix is induced by impurities, as was claimed on the basis of prior work on LiCu$_2$O$_2$. A spin Hamiltonian with frustrated longer-range exchange interactions provides a good description of both the ordered state and the paramagnetic susceptibility.
Using powder neutron diffraction we have discovered an unusual magnetic order-order transition in the Ising spin chain compound Ca3Co2O6. On lowering the temperature an antiferromagnetic phase with propagation vector k=(0.5,-0.5,1) emerges from a higher temperature spin density wave structure with k=(0, 0, 1.01). This transition occurs over an unprecedented time-scale of several hours and is never complete.
We consider a spin-fermion model consisting of free electrons coupled to classical spins, where the latter are embedded in a quasi one-dimensional superlattice structure consisting of spin blocks separated by spinless buffers. Using a spiral ansatz for the spins, we study the effect of the electron mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction on the $T=0$ ground state of the system. We find that the RKKY interaction can lead to ferromagnetic, antiferromagnetic, or intermediate spiral phases for different system parameters. When the width is much larger than the length of the individual blocks, the spiral phases are suppressed, and the ground state oscillates between ferromagnetic and antiferromagnetic order as the size of the buffer regions is varied. This is accompanied by a corresponding oscillation in the Drude weight reflecting an increased conductivity in the ferromagnetic state compared to the antiferromagnetic one. These results are reminiscent of classic giant magnetoresistance phenomena observed in a similar geometry of thin, sandwiched magnetic and non-magnetic layers. Our analysis provides a robust framework for understanding the role of the RKKY interaction on the ground state order and corresponding transport properties of such systems, extending beyond the conventional perturbative regime.
We report zero and longitudinal magnetic field muon spin relaxation measurements of the spin S=1/2 antiferromagnetic Heisenberg chain material SrCuO2. We find that in a weak applied magnetic field B the spin-lattice relaxation rate follows a power law B^n with n=-0.9(3). This result is temperature independent for 5K < T < 300 K. Within conformal field theory and using the Muller ansatz we conclude ballistic spin transport in SrCuO2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا