Do you want to publish a course? Click here

Heavy fermion superconductivity and magnetic order in non-centrosymmetric $CePt_3Si$

65   0   0.0 ( 0 )
 Added by Ernst Bauer
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

$rm CePt_3Si$ is a novel heavy fermion superconductor, crystallising in the $rm CePt_3B$ structure as a tetragonally distorted low symmetry variant of the $rm AuCu_3$ structure type. $rm CePt_3Si$ exhibits antiferromagnetic order at $T_N approx 2.2$ K and enters into a heavy fermion superconducting state at $T_c approx 0.75$ K. Large values of $H_{c2} approx -8.5$ T/K and $H_{c2}(0) approx 5$ T refer to heavy quasiparticles forming Cooper pairs. Hitherto, $rm CePt_3Si$ is the first heavy fermion superconductor without a center of symmetry.



rate research

Read More

We grew single crystals of the recently discovered heavy fermion superconductor UTe2, and measured the resistivity, specific heat and magnetoresistance. Superconductivity (SC) was clearly detected at Tsc=1.65K as sharp drop of the resistivity in a high quality sample of RRR=35. The specific heat shows a large jump at Tsc indicating strong coupling. The large Sommerfeld coefficient, 117mJ K-2mol-1 extrapolated in the normal state and the temperature dependence of C/T below Tsc are the signature of unconventional SC. The discrepancy in the entropy balance at Tsc between SC and normal states points out that hidden features must occur. Surprisingly, a large residual value of the Sommerfeld coefficient seems quite robust (gamma_0/gamma ~ 0.5). The large upper critical field Hc2 along the three principal axes favors spin-triplet SC. For H // b-axis, our experiments do not reproduce the huge upturn of Hc2 reported previously. This discrepancy may reflect that Hc2 is very sensitive to the sample quality. A new perspective in UTe2 is the proximity of a Kondo semiconducting phase predicted by the LDA band structure calculations.
The interplay of magnetism and unconventional superconductivity (d singlet wave or p triplet wave) in strongly correlated electronic system (SCES) is discussed with recent examples found in heavy fermion compounds. A short presentation is given on the formation of the heavy quasiparticle with the two sources of a local and intersite enhancement for the effective mass. Two cases of the coexistence or repulsion of antiferromagnetism and superconductivity are given with CeIn3 and CeCoIn5. A spectacular example is the emergence of superconductivity in relatively strong itinerant ferromagnets UGe2 and URhGe. The impact of heavy fermion matter among other SCES as organic conductor or high Tc oxide is briefly pointed out.
We report the observation of heavy-fermion superconducitivity in CeCoIn5 at Tc =2.3 K. When compared to the pressure-induced Tc of its cubic relative CeIn3 (Tc ~200 mK), the Tc of CeCoIn5 is remarkably high. We suggest that this difference may arise from magnetically mediated superconductivity in the layered crystal structure of CeCoIn5 .
The high field superconducting state in CeCoIn5 has been studied by transverse field muon spin rotation measurements with an applied field parallel to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T. At magnetic fields >= 4.8 T the muon Knight shift is enhanced and the superconducting transition changes from second order towards first order as predicted for Pauli-limited superconductors. The field and temperature dependence of the transverse muon spin relaxation rate sigma reveal paramagnetic spin fluctuations in the field regime from 2 T < H < 4.8 T. In the normal state close to Hc2 correlated spin fluctuations as described by the self consistent renormalization theory are observed. The results support the formation of a mode-coupled superconducting and antiferromagnetically ordered phase in CeCoIn5 for H directed parallel to the c-axis.
Superconductivity and magnetism in the non-centrosymmetric heavy fermion compound CePt$_3$Si and related materials are theoretically investigated. Based on the randam phase approximation (RPA) analysis for the extended Hubbard model we describe the helical spin fluctuation induced by the Rashba-type anti-symmetric spin-orbit coupling and identify the two stable superconducting phases with either dominantly p-wave ($s$ + $P$-wave) or d-wave ($p$ + $D$ + $f$-wave) symmetry. The influcnce of the coexistent anti-ferromagnetic order is investigated in both states. The SC order parameter, quasiparticle density of state, NMR $1/T_{1}T$, specific heat, anisotropy of $H_{rm c2}$ and possible multiple phase transitions are discussed in details. The comparison with experimental results indicates that the $s$ + $P$-wave superconducting state is likely realized in CePt$_3$Si.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا