No Arabic abstract
When applied to dynamical systems, both classical and quantum, time periodic modulations can produce complex non-equilibrium states which are often termed chaotic`. Being well understood within the unitary Hamiltonian framework, this phenomenon is less explored in open quantum systems. Here we consider quantum chaotic state emerging in a leaky cavity, when an intracavity photonic mode is coherently pumped with the intensity varying periodically in time. We show that a single spin, when placed inside the cavity and coupled to the mode, can moderate transitions between regular and chaotic regimes -- that are identified by using quantum Lyapunov exponents -- and thus can be used to control the degree of chaos. In an experiment, these transitions can be detected by analyzing photon emission statistics.
In this letter, we demonstrate that a non-Hermitian Random Matrix description can account for both spectral and spatial statistics of resonance states in a weakly open chaotic wave system with continuously distributed losses. More specifically, the statistics of resonance states in an open 2D chaotic microwave cavity are investigated by solving the Maxwell equations with lossy boundaries subject to Ohmic dissipation. We successfully compare the statistics of its complex-valued resonance states and associated widths with analytical predictions based on a non-Hermitian effective Hamiltonian model defined by a finite number of fictitious open channels.
We propose periodically-modulated entangled states of light and show that they can be generated in two experimentally feasible schemes of nondegenerate optical parametric oscillator (NOPO): (i) driven by continuously modulated pump field; (ii) under action of a periodic sequence of identical laser pulses. We show that the time-modulation of the pump field amplitude essentially improves the degree of continuous-variable entanglement in NOPO. We develop semiclassical and quantum theories of these devices for both below- and above-threshold regimes. Our analytical results are in well agrement with numerical simulation and support a concept of time-modulated entangled states.
We study a dissipative quantum mechanical model of the projective measurement of a qubit. We demonstrate how a correspondence limit, damped quantum oscillator can realise chaotic-like or periodic trajectories that emerge in sympathy with the projection of the qubit state, providing a model of the measurement process.
Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence caused by the system-environment interactions causes the states deviating from the desired manners. How to protect quantum resources under the coexistence of active control and passive decoherence is of significance. Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum: Accompanying the formation of bound states in the energy spectrum, the decoherence can be suppressed. It supplies a guideline to control decoherence. Such idea can be generalized to systems under periodic driving. By virtue of manipulating Floquet bound states in the quasienergy spectrum, coherent control via periodic driving dubbed as Floquet engineering has become a versatile tool not only in controlling decoherence, but also in artificially synthesizing exotic topological phases. We will review the progress on quantum control in open and periodically driven systems. Special attention will be paid to the distinguished role played by the bound states and their controllability via periodic driving in suppressing decoherence and generating novel topological phases.
A growing number of experimental set-ups in cavity optomechanics exploit periodically driven fields. However, such set-ups are not amenable to analysis using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a new method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators (ii) Floquet and (iii) iterative analysis. We prove that (i) and (ii) yield equivalent noise spectra, and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly-modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how experimentally inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies.