Do you want to publish a course? Click here

Quantum Control in Open and Periodically Driven Systems

83   0   0.0 ( 0 )
 Added by Jun-Hong An
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence caused by the system-environment interactions causes the states deviating from the desired manners. How to protect quantum resources under the coexistence of active control and passive decoherence is of significance. Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum: Accompanying the formation of bound states in the energy spectrum, the decoherence can be suppressed. It supplies a guideline to control decoherence. Such idea can be generalized to systems under periodic driving. By virtue of manipulating Floquet bound states in the quasienergy spectrum, coherent control via periodic driving dubbed as Floquet engineering has become a versatile tool not only in controlling decoherence, but also in artificially synthesizing exotic topological phases. We will review the progress on quantum control in open and periodically driven systems. Special attention will be paid to the distinguished role played by the bound states and their controllability via periodic driving in suppressing decoherence and generating novel topological phases.



rate research

Read More

Spatial symmetries of quantum systems leads to important effects in spectroscopy, such as selection rules and dark states. Motivated by the increasing strength of light-matter interaction achieved in recent experiments, we investigate a set of dynamically-generalized symmetries for quantum systems, which are subject to a strong periodic driving. Based on Floquet response theory, we study rotational, particle-hole, chiral and time-reversal symmetries and their signatures in spectroscopy, including symmetry-protected dark states (spDS), a Floquet band selection rule (FBSR), and symmetry-induced transparency (siT). Specifically, a dynamical rotational symmetry establishes dark state conditions, as well as selection rules for inelastic light scattering processes; a particle-hole symmetry introduces dark states for symmetry related Floquet states and also a transparency effect at quasienergy crossings; chiral symmetry and time-reversal symmetry alone do not imply dark state conditions, but can be combined to the particle-hole symmetry. Our predictions reveal new physical phenomena when a quantum system reaches the strong light-matter coupling regime, important for superconducting qubits, atoms and molecules in optical or plasmonic field cavities, and optomechanical systems.
245 - Martin Claassen 2021
We develop a flow renormalization approach for periodically-driven quantum systems, which reveals prethermal dynamical regimes and associated timescales via direct correspondence between real time and flow time behavior. In this formalism, the dynamical problem is recast in terms of coupling constants of the theory flowing towards an attractive fixed point that represents the thermal Floquet Hamiltonian at long times, while narrowly avoiding a series of unstable fixed points which determine distinct prethermal regimes at intermediate times. We study a class of relevant perturbations that trigger the onset of heating and thermalization, and demonstrate that the renormalization flow has an elegant representation in terms of a flow of matrix product operators. Our results permit microscopic calculations of the emergence of distinct dynamical regimes directly in the thermodynamic limit in an efficient manner, establishing a new computational tool for driven non-equilibrium systems.
Quantum phases of matter have many relevant applications in quantum computation and quantum information processing. Current experimental feasibilities in diverse platforms allow us to couple two or more subsystems in different phases. In this letter, we investigate the situation where one couples two domains of a periodically-driven spin chain where one of them is ergodic while the other is fully localized. By combining tools of both graph and Floquet theory, we show that the localized domain remains stable for strong disorder, but as this disorder decreases the localized domain becomes ergodic.
74 - Guoqing Wang , Changhao Li , 2021
Periodically driven quantum systems, known as Floquet systems, have been a focus of non-equilibrium physics in recent years, thanks to their rich dynamics. Not only time-periodic systems exhibit symmetries similar to those in spatially periodic systems, but they also display novel behavior due to symmetry breaking. Characterizing such dynamical symmetries is crucial, but the task is often challenging, due to limited driving strength and the lack of an experimentally accessible characterization protocol. Here, we show how to characterize dynamical symmetries including parity, rotation, and particle-hole symmetry by observing the symmetry-induced selection rules between Floquet states. Specifically, we exploit modulated quantum driving to reach the strong light-matter coupling regime and we introduce a protocol to experimentally extract the transition elements between Floquet states from the coherent evolution of the system. Using the nitrogen-vacancy center in diamond as an experimental testbed, we apply our methods to observe symmetry-protected dark states and dark bands, and the coherent destruction of tunneling effect. Our work shows how to exploit the quantum control toolkit to study dynamical symmetries that can arise in topological phases of strongly-driven Floquet systems.
As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relatively well understood, the quantum case still poses challenges. Here we set up a formalism that allows to calculate the full probability distribution of energy exchanges between a periodically driven quantum system and a thermalized heat reservoir. The formalism combines Floquet theory with a generalized master equation approach. For a driven two-level system and in the long-time limit, we obtain a universal expression for the distribution, providing clear physical insight into the exchanged energy quanta. We illustrate our approach in two analytically solvable cases and discuss the differences in the corresponding distributions. Our predictions could be directly tested in a variety of systems, including optical cavities and solid-state devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا