Do you want to publish a course? Click here

BlockRoam: Blockchain-based Roaming Management System for Future Mobile Networks

110   0   0.0 ( 0 )
 Added by Cong Nguyen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Mobile service providers (MSPs) are particularly vulnerable to roaming frauds, especially ones that exploit the long delay in the data exchange process of the contemporary roaming management systems, causing multi-billion dollars loss each year. In this paper, we introduce BlockRoam, a novel blockchain-based roaming management system that provides an efficient data exchange platform among MSPs and mobile subscribers. Utilizing the Proof-of-Stake (PoS) consensus mechanism and smart contracts, BlockRoam can significantly shorten the information exchanging delay, thereby addressing the roaming fraud problems. Through intensive analysis, we show that the security and performance of such PoS-based blockchain network can be further enhanced by incentivizing more users (e.g., subscribers) to participate in the network. Moreover, users in such networks often join stake pools (e.g., formed by MSPs) to increase their profits. Therefore, we develop an economic model based on Stackelberg game to jointly maximize the profits of the network users and the stake pool, thereby encouraging user participation. We also propose an effective method to guarantee the uniqueness of this games equilibrium. The performance evaluations show that the proposed economic model helps the MSPs to earn additional profits, attracts more investment to the blockchain network, and enhances the networks security and performance.



rate research

Read More

Privacy preservation is a big concern for various sectors. To protect individual user data, one emerging technology is differential privacy. However, it still has limitations for datasets with frequent queries, such as the fast accumulation of privacy cost. To tackle this limitation, this paper explores the integration of a secured decentralised ledger, blockchain. Blockchain will be able to keep track of all noisy responses generated with differential privacy algorithm and allow for certain queries to reuse old responses. In this paper, a demo of a proposed blockchain-based privacy management system is designed as an interactive decentralised web application (DApp). The demo created illustrates that leveraging on blockchain will allow the total privacy cost accumulated to decrease significantly.
186 - Zhaojun Lu , Qian Wang , Gang Qu 2018
The public key infrastructure (PKI) based authentication protocol provides the basic security services for vehicular ad-hoc networks (VANETs). However, trust and privacy are still open issues due to the unique characteristics of vehicles. It is crucial for VANETs to prevent internal vehicles from broadcasting forged messages while simultaneously protecting the privacy of each vehicle against tracking attacks. In this paper, we propose a blockchain-based anonymous reputation system (BARS) to break the linkability between real identities and public keys to preserve privacy. The certificate and revocation transparency is implemented efficiently using two blockchains. We design a trust model to improve the trustworthiness of messages relying on the reputation of the sender based on both direct historical interactions and indirect opinions about the sender. Experiments are conducted to evaluate BARS in terms of security and performance and the results show that BARS is able to establish distributed trust management, while protecting the privacy of vehicles.
Massive amounts of multimedia data (i.e., text, audio, video, graphics and animation) are being generated everyday. Conventionally, multimedia data are managed by the platforms maintained by multimedia service providers, which are generally designed using centralised architecture. However, such centralised architecture may lead to a single point of failure and disputes over royalties or other rights. It is hard to ensure the data integrity and track fulfilment of obligations listed on the copyright agreement. To tackle these issues, in this paper, we present a blockchain-based platform architecture for multimedia data management. We adopt self-sovereign identity for identity management and design a multi-level capability-based mechanism for access control. We implement a proof-of-concept prototype using the proposed approach and evaluate it using a use case. The results show that the proposed approach is feasible and has scalable performance.
Blockchain brings various advantages to online transactions. However, the total transparency of these transactions may leakage users sensitive information. Requirements on both cooperation and anonymity for companies/organizations become necessary. In this paper, we propose a Multi-center Anonymous Blockchain-based (MAB) system, with joint management for the consortium and privacy protection for the participants. To achieve that, we formalize the syntax used by the MAB system and present a general construction based on a modular design. By applying cryptographic primitives to each module, we instantiate our scheme with anonymity and decentralization. Furthermore, we carry out a comprehensive formal analysis of the proposed solution. The results demonstrate our constructed scheme is secure and efficient.
There has been tremendous interest in the development of formal trust models and metrics through the use of analytics (e.g., Belief Theory and Bayesian models), logics (e.g., Epistemic and Subjective Logic) and other mathematical models. The choice of trust metric will depend on context, circumstance and user requirements and there is no single best metric for use in all circumstances. Where different users require different trust metrics to be employed the trust score calculations should still be based on all available trust evidence. Trust is normally computed using past experiences but, in practice (especially in centralised systems), the validity and accuracy of these experiences are taken for granted. In this paper, we provide a formal framework and practical blockchain-based implementation that allows independent trust providers to implement different trust metrics in a distributed manner while still allowing all trust providers to base their calculations on a common set of trust evidence. Further, our design allows experiences to be provably linked to interactions without the need for a central authority. This leads to the notion of evidence-based trust with provable interactions. Leveraging blockchain allows the trust providers to offer their services in a competitive manner, charging fees while users are provided with payments for recording experiences. Performance details of the blockchain implementation are provided.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا