Do you want to publish a course? Click here

Blockchain-Based Differential Privacy Cost Management System

125   0   0.0 ( 0 )
 Added by Yang Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Privacy preservation is a big concern for various sectors. To protect individual user data, one emerging technology is differential privacy. However, it still has limitations for datasets with frequent queries, such as the fast accumulation of privacy cost. To tackle this limitation, this paper explores the integration of a secured decentralised ledger, blockchain. Blockchain will be able to keep track of all noisy responses generated with differential privacy algorithm and allow for certain queries to reuse old responses. In this paper, a demo of a proposed blockchain-based privacy management system is designed as an interactive decentralised web application (DApp). The demo created illustrates that leveraging on blockchain will allow the total privacy cost accumulated to decrease significantly.



rate research

Read More

When collecting information, local differential privacy (LDP) alleviates privacy concerns of users because their private information is randomized before being sent it to the central aggregator. LDP imposes large amount of noise as each user executes the randomization independently. To address this issue, recent work introduced an intermediate server with the assumption that this intermediate server does not collude with the aggregator. Under this assumption, less noise can be added to achieve the same privacy guarantee as LDP, thus improving utility for the data collection task. This paper investigates this multiple-party setting of LDP. We analyze the system model and identify potential adversaries. We then make two improvements: a new algorithm that achieves a better privacy-utility tradeoff; and a novel protocol that provides better protection against various attacks. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method.
115 - Jianxiong Guo , Weili Wu 2021
In recent years, the blockchain-based Internet of Things (IoT) has been researched and applied widely, where each IoT device can act as a node in the blockchain. However, these lightweight nodes usually do not have enough computing power to complete the consensus or other computing-required tasks. Edge computing network gives a platform to provide computing power to IoT devices. A fundamental problem is how to allocate limited edge servers to IoT devices in a highly untrustworthy environment. In a fair competition environment, the allocation mechanism should be online, truthful, and privacy safe. To address these three challenges, we propose an online multi-item double auction (MIDA) mechanism, where IoT devices are buyers and edge servers are sellers. In order to achieve the truthfulness, the participants private information is at risk of being exposed by inference attack, which may lead to malicious manipulation of the market by adversaries. Then, we improve our MIDA mechanism based on differential privacy to protect sensitive information from being leaked. It interferes with the auction results slightly but guarantees privacy protection with high confidence. Besides, we upgrade our privacy-preserving MIDA mechanism such that adapting to more complex and realistic scenarios. In the end, the effectiveness and correctness of algorithms are evaluated and verified by theoretical analysis and numerical simulations.
Mobile service providers (MSPs) are particularly vulnerable to roaming frauds, especially ones that exploit the long delay in the data exchange process of the contemporary roaming management systems, causing multi-billion dollars loss each year. In this paper, we introduce BlockRoam, a novel blockchain-based roaming management system that provides an efficient data exchange platform among MSPs and mobile subscribers. Utilizing the Proof-of-Stake (PoS) consensus mechanism and smart contracts, BlockRoam can significantly shorten the information exchanging delay, thereby addressing the roaming fraud problems. Through intensive analysis, we show that the security and performance of such PoS-based blockchain network can be further enhanced by incentivizing more users (e.g., subscribers) to participate in the network. Moreover, users in such networks often join stake pools (e.g., formed by MSPs) to increase their profits. Therefore, we develop an economic model based on Stackelberg game to jointly maximize the profits of the network users and the stake pool, thereby encouraging user participation. We also propose an effective method to guarantee the uniqueness of this games equilibrium. The performance evaluations show that the proposed economic model helps the MSPs to earn additional profits, attracts more investment to the blockchain network, and enhances the networks security and performance.
Permissioned blockchain such as Hyperledger fabric enables a secure supply chain model in Industrial Internet of Things (IIoT) through multichannel and private data collection mechanisms. Sharing of Industrial data including private data exchange at every stage between supply chain partners helps to improve product quality, enable future forecast, and enhance management activities. However, the existing data sharing and querying mechanism in Hyperledger fabric is not suitable for supply chain environment in IIoT because the queries are evaluated on actual data stored on ledger which consists of sensitive information such as business secrets, and special discounts offered to retailers and individuals. To solve this problem, we propose a differential privacy-based permissioned blockchain using Hyperledger fabric to enable private data sharing in supply chain in IIoT (DH-IIoT). We integrate differential privacy into the chaindcode (smart contract) of Hyperledger fabric to achieve privacy preservation. As a result, the query response consists of perturbed data which protects the sensitive information in the ledger. The proposed work (DH-IIoT) is evaluated by simulating a permissioned blockchain using Hyperledger fabric. We compare our differential privacy integrated chaincode of Hyperledger fabric with the default chaincode setting of Hyperledger fabric for supply chain scenario. The results confirm that the proposed work maintains 96.15% of accuracy in the shared data while guarantees the protection of sensitive ledgers data.
Extended differential privacy, a generalization of standard differential privacy (DP) using a general metric, has been widely studied to provide rigorous privacy guarantees while keeping high utility. However, existing works on extended DP are limited to few metrics, such as the Euclidean metric. Consequently, they have only a small number of applications, such as location-based services and document processing. In this paper, we propose a couple of mechanisms providing extended DP with a different metric: angular distance (or cosine distance). Our mechanisms are based on locality sensitive hashing (LSH), which can be applied to the angular distance and work well for personal data in a high-dimensional space. We theoretically analyze the privacy properties of our mechanisms, and prove extended DP for input data by taking into account that LSH preserves the original metric only approximately. We apply our mechanisms to friend matching based on high-dimensional personal data with angular distance in the local model, and evaluate our mechanisms using two real datasets. We show that LDP requires a very large privacy budget and that RAPPOR does not work in this application. Then we show that our mechanisms enable friend matching with high utility and rigorous privacy guarantees based on extended DP.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا