No Arabic abstract
Massive amounts of multimedia data (i.e., text, audio, video, graphics and animation) are being generated everyday. Conventionally, multimedia data are managed by the platforms maintained by multimedia service providers, which are generally designed using centralised architecture. However, such centralised architecture may lead to a single point of failure and disputes over royalties or other rights. It is hard to ensure the data integrity and track fulfilment of obligations listed on the copyright agreement. To tackle these issues, in this paper, we present a blockchain-based platform architecture for multimedia data management. We adopt self-sovereign identity for identity management and design a multi-level capability-based mechanism for access control. We implement a proof-of-concept prototype using the proposed approach and evaluate it using a use case. The results show that the proposed approach is feasible and has scalable performance.
Blockchain has attracted a broad range of interests from start-ups, enterprises and governments to build next generation applications in a decentralized manner. Similar to cloud platforms, a single blockchain-based system may need to serve multiple tenants simultaneously. However, design of multi-tenant blockchain-based systems is challenging to architects in terms of data and performance isolation, as well as scalability. First, tenants must not be able to read other tenants data and tenants with potentially higher workload should not affect read/write performance of other tenants. Second, multi-tenant blockchain-based systems usually require both scalability for each individual tenant and scalability with number of tenants. Therefore, in this paper, we propose a scalable platform architecture for multi-tenant blockchain-based systems to ensure data integrity while maintaining data privacy and performance isolation. In the proposed architecture, each tenant has an individual permissioned blockchain to maintain their own data and smart contracts. All tenant chains are anchored into a main chain, in a way that minimizes cost and load overheads. The proposed architecture has been implemented in a proof-of-concept prototype with our industry partner, Laava ID Pty Ltd (Laava). We evaluate our proposal in a three-fold way: fulfilment of the identified requirements, qualitative comparison with design alternatives, and quantitative analysis. The evaluation results show that the proposed architecture can achieve data integrity, performance isolation, data privacy, configuration flexibility, availability, cost efficiency and scalability.
Self-sovereign identity is a new identity management paradigm that allows entities to really have the ownership of their identity data and control their use without involving any intermediary. Blockchain is an enabling technology for building self-sovereign identity systems by providing a neutral and trustable storage and computing infrastructure and can be viewed as a component of the systems. Both blockchain and self-sovereign identity are emerging technologies which could present a steep learning curve for architects. We collect and propose 12 design patterns for blockchain-based self-sovereign identity systems to help the architects understand and easily apply the concepts in system design. Based on the lifecycles of three main objects involved in self-sovereign identity, we categorise the patterns into three groups: key management patterns, decentralised identifier management patterns, and credential design patterns. The proposed patterns provide a systematic and holistic guide for architects to design the architecture of blockchain-based self-sovereign identity systems.
Blockchain has received tremendous attention as a secure, distributed, and anonymous framework for the Internet of Things (IoT). As a distributed system, blockchain trades off scalability for distribution, which limits the technologys adaptation for large scale networks such as IoT. All transactions and blocks must be broadcast and verified by all participants which limits scalability and incurs computational and communication overheads. The existing solutions to scale blockchains have so far led to partial recentralization, limiting the technologys original appeal. In this paper, we introduce a distributed yet scalable Verification and Communication architecture for blockchain referred to as Vericom. Vericom concurrently achieves high scalability and distribution using hash function outputs to shift blockchains from broadcast to multicast communication. Unlike conventional blockchains where all nodes must verify new transactions/blocks, Vericom uses the hash of IoT traffic to randomly select a set of nodes to verify transactions/blocks which in turn reduces the processing overhead. Vericom incorporates two layers: i) transmission layer where a randomized multicasting method is introduced along with a backbone network to route traffic, i.e., transactions and blocks, from the source to the destination, and ii) verification layer where a set of randomly selected nodes are allocated to verify each transaction or block. The performance evaluation shows that Vericom reduces the packet and processing overhead as compared with conventional blockchains. In the worst case, packet overhead in Vericom scales linearly with the number of nodes while the processing overhead remains scale-independent.
There has been tremendous interest in the development of formal trust models and metrics through the use of analytics (e.g., Belief Theory and Bayesian models), logics (e.g., Epistemic and Subjective Logic) and other mathematical models. The choice of trust metric will depend on context, circumstance and user requirements and there is no single best metric for use in all circumstances. Where different users require different trust metrics to be employed the trust score calculations should still be based on all available trust evidence. Trust is normally computed using past experiences but, in practice (especially in centralised systems), the validity and accuracy of these experiences are taken for granted. In this paper, we provide a formal framework and practical blockchain-based implementation that allows independent trust providers to implement different trust metrics in a distributed manner while still allowing all trust providers to base their calculations on a common set of trust evidence. Further, our design allows experiences to be provably linked to interactions without the need for a central authority. This leads to the notion of evidence-based trust with provable interactions. Leveraging blockchain allows the trust providers to offer their services in a competitive manner, charging fees while users are provided with payments for recording experiences. Performance details of the blockchain implementation are provided.
Privacy preservation is a big concern for various sectors. To protect individual user data, one emerging technology is differential privacy. However, it still has limitations for datasets with frequent queries, such as the fast accumulation of privacy cost. To tackle this limitation, this paper explores the integration of a secured decentralised ledger, blockchain. Blockchain will be able to keep track of all noisy responses generated with differential privacy algorithm and allow for certain queries to reuse old responses. In this paper, a demo of a proposed blockchain-based privacy management system is designed as an interactive decentralised web application (DApp). The demo created illustrates that leveraging on blockchain will allow the total privacy cost accumulated to decrease significantly.