Do you want to publish a course? Click here

Building a PubMed knowledge graph

120   0   0.0 ( 0 )
 Added by Jian Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

PubMed is an essential resource for the medical domain, but useful concepts are either difficult to extract or are ambiguated, which has significantly hindered knowledge discovery. To address this issue, we constructed a PubMed knowledge graph (PKG) by extracting bio-entities from 29 million PubMed abstracts, disambiguating author names, integrating funding data through the National Institutes of Health (NIH) ExPORTER, collecting affiliation history and educational background of authors from ORCID, and identifying fine-grained affiliation data from MapAffil. Through the integration of the credible multi-source data, we could create connections among the bio-entities, authors, articles, affiliations, and funding. Data validation revealed that the BioBERT deep learning method of bio-entity extraction significantly outperformed the state-of-the-art models based on the F1 score (by 0.51%), with the author name disambiguation (AND) achieving a F1 score of 98.09%. PKG can trigger broader innovations, not only enabling us to measure scholarly impact, knowledge usage, and knowledge transfer, but also assisting us in profiling authors and organizations based on their connections with bio-entities. The PKG is freely available on Figshare (https://figshare.com/s/6327a55355fc2c99f3a2, simplified version that exclude PubMed raw data) and TACC website (http://er.tacc.utexas.edu/datasets/ped, full version).



rate research

Read More

Due to the lack of structure, scholarly knowledge remains hardly accessible for machines. Scholarly knowledge graphs have been proposed as a solution. Creating such a knowledge graph requires manual effort and domain experts, and is therefore time-consuming and cumbersome. In this work, we present a human-in-the-loop methodology used to build a scholarly knowledge graph leveraging literature survey articles. Survey articles often contain manually curated and high-quality tabular information that summarizes findings published in the scientific literature. Consequently, survey articles are an excellent resource for generating a scholarly knowledge graph. The presented methodology consists of five steps, in which tables and references are extracted from PDF articles, tables are formatted and finally ingested into the knowledge graph. To evaluate the methodology, 92 survey articles, containing 160 survey tables, have been imported in the graph. In total, 2,626 papers have been added to the knowledge graph using the presented methodology. The results demonstrate the feasibility of our approach, but also indicate that manual effort is required and thus underscore the important role of human experts.
Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get an overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KGs) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective by presenting a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications and outline possible solutions.
The Open Research Knowledge Graph (ORKG) provides machine-actionable access to scholarly literature that habitually is written in prose. Following the FAIR principles, the ORKG makes traditional, human-coded knowledge findable, accessible, interoperable, and reusable in a structured manner in accordance with the Linked Open Data paradigm. At the moment, in ORKG papers are described manually, but in the long run the semantic depth of the literature at scale needs automation. Operational Research is a suitable test case for this vision because the mathematical field and, hence, its publication habits are highly structured: A mundane problem is formulated as a mathematical model, solved or approximated numerically, and evaluated systematically. We study the existing literature with respect to the Assembly Line Balancing Problem and derive a semantic description in accordance with the ORKG. Eventually, selected papers are ingested to test the semantic description and refine it further.
Background: The deployment of various networks (e.g., Internet of Things (IoT) and mobile networks) and databases (e.g., nutrition tables and food compositional databases) in the food system generates massive information silos due to the well-known data harmonization problem. The food knowledge graph provides a unified and standardized conceptual terminology and their relationships in a structured form and thus can transform these information silos across the whole food system to a more reusable globally digitally connected Internet of Food, enabling every stage of the food system from farm-to-fork. Scope and approach: We review the evolution of food knowledge organization, from food classification, food ontology to food knowledge graphs. We then discuss the progress in food knowledge graphs from several representative applications. We finally discuss the main challenges and future directions. Key findings and conclusions: Our comprehensive summary of current research on food knowledge graphs shows that food knowledge graphs play an important role in food-oriented applications, including food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization, food traceability, and food machinery intelligent manufacturing. Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا