No Arabic abstract
Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get an overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KGs) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective by presenting a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications and outline possible solutions.
Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions.
The Open Research Knowledge Graph (ORKG) provides machine-actionable access to scholarly literature that habitually is written in prose. Following the FAIR principles, the ORKG makes traditional, human-coded knowledge findable, accessible, interoperable, and reusable in a structured manner in accordance with the Linked Open Data paradigm. At the moment, in ORKG papers are described manually, but in the long run the semantic depth of the literature at scale needs automation. Operational Research is a suitable test case for this vision because the mathematical field and, hence, its publication habits are highly structured: A mundane problem is formulated as a mathematical model, solved or approximated numerically, and evaluated systematically. We study the existing literature with respect to the Assembly Line Balancing Problem and derive a semantic description in accordance with the ORKG. Eventually, selected papers are ingested to test the semantic description and refine it further.
Analysing research trends and predicting their impact on academia and industry is crucial to gain a deeper understanding of the advances in a research field and to inform critical decisions about research funding and technology adoption. In the last years, we saw the emergence of several publicly-available and large-scale Scientific Knowledge Graphs fostering the development of many data-driven approaches for performing quantitative analyses of research trends. This chapter presents an innovative framework for detecting, analysing, and forecasting research topics based on a large-scale knowledge graph characterising research articles according to the research topics from the Computer Science Ontology. We discuss the advantages of a solution based on a formal representation of topics and describe how it was applied to produce bibliometric studies and innovative tools for analysing and predicting research dynamics.
The vast amount of research produced at institutions world-wide is extremely diverse, and coarse-grained quantitative measures of impact often obscure the individual contributions of these institutions to specific research fields and topics. We show that by applying an information retrieval model to index research articles which are faceted by institution and time, we can develop tools to rank institutions given a keyword query. We present an interactive atlas, Quoka, designed to enable a user to explore these rankings contextually by geography and over time. Through a set of use cases we demonstrate that the atlas can be used to perform sensemaking tasks to learn and collect information about the relationships between institutions and scholarly knowledge production.
Our study is one of the first examples of multidimensional and longitudinal disciplinary analysis at the national level based on Crossref data. We present a large-scale quantitative analysis of Ukrainian economics. This study is not yet another example of research aimed at ranking of local journals, authors or institutions, but rather exploring general tendencies that can be compared to other countries or regions. We study different aspects of Ukrainian economics output. In particular, the collaborative nature, geographic landscape and some peculiarities of citation statistics are investigated. We have found that Ukrainian economics is characterized by a comparably small share of co-authored publications, however, it demonstrates the tendency towards more collaborative output. Based on our analysis, we discuss specific and universal features of Ukrainian economic research. The importance of supporting various initiatives aimed at enriching open scholarly metadata is considered. A comprehensive and high-quality meta description of publications is probably the shortest path to a better understanding of national trends, especially for non-English speaking countries. The results of our analysis can be used to better understand Ukrainian economic research and support research policy decisions.