No Arabic abstract
Astrophysical measurements have shown that some stars have sufficiently high carbon-to-oxygen ratios such that the planets they host would be mainly composed of carbides instead of silicates. We studied the behavior of silicon carbide in the presence of water under the high pressure-temperature conditions relevant to planetary interiors in the laser-heated diamond-anvil cell (LHDAC). When reacting with water, silicon carbide converts to silica (stishovite) and diamond at pressures up to 50 GPa and temperatures up to 2500 K: SiC + 2H$_2$O -> SiO$_2$ + C + 2H$_2$. Therefore, if water can be incorporated into carbide planets during their formation or through later delivery, they could be oxidized and have mineralogy dominated by silicates and diamond in their interiors. The reaction could produce CH$_4$ at shallower depths and H$_2$ at greater depths which could be degassed from the interior, causing the atmospheres of the converted carbon planets to be rich in reducing gases. Excess water after the reaction can be stored in dense silica polymorphs in the interiors of the converted carbon planets. Such conversion of mineralogy to diamond and silicates would decrease the density of carbon-rich planet, making the converted planets distinct from silicate planets in mass-radius relations for the 2-8 Earth mass range.
Theoretical models predict the condensation of silicon carbide around host stars with C/O ratios higher than 0.65 (cf. C/O$_{mathrm{Sun}}$ = 0.54), in addition to its observations in meteorites, interstellar medium and protoplanetary disks. Consequently, the interiors of rocky exoplanets born from carbon-enriched refractory material are often assumed to contain large amounts of silicon carbide. Here we aim to investigate the stability of silicon carbide in the interior of carbon-enriched rocky exoplanets and to derive the reaction leading to its transformation. We performed a high-pressure high-temperature experiment to investigate the reaction between a silicon carbide layer and a layer representative of the bulk composition of a carbon-enriched rocky exoplanet. We report the reaction leading to oxidation of silicon carbide producing quartz, graphite, and molten iron silicide. Combined with previous studies, we show that in order to stabilize silicon carbide, carbon saturation is not sufficient, and a complete reduction of Fe$^{2+}$ to Fe$^{0}$ in a planetary mantle is required, suggesting that future spectroscopic detection of Fe$^{2+}$ or Fe$^{3+}$ on the surface of rocky exoplanets would imply the absence of silicon carbide in their interiors.
One objective of a lander mission to Jupiters icy moon Europa is to detect liquid water within 30 km as well as characterizing the subsurface ocean. In order to satisfy this objective, water within the ice shell must also be identified. Inductive electromagnetic (EM) methods are optimal for water detection on Europa because even a small fraction of dissolved salts will make water orders of magnitude more electrically conductive than the ice shell. Compared to induction studies by the Galileo spacecraft, measurements of higher-frequency ambient EM fields are necessary to resolve the shallower depths of intrashell water. Although these fields have been mostly characterized by prior missions, their unknown source structures and plasma properties do not allow EM sounding using a single surface magnetometer or the orbit-to-surface magnetic transfer function, respectively. Instead, broadband EM sounding can be accomplished from a single surface station using the magnetotelluric (MT) method, which measures horizontal electric fields as well as the three-component magnetic field. We have developed a prototype Europa Magnetotelluric Sounder (EMS) to meet the measurement requirements in the relevant thermal, vacuum, and radiation environment. EMS comprises central electronics, a fluxgate magnetometer on a mast, and three ballistically deployed electrodes to measure differences in surface electric potential. In this paper, we describe EMS development and testing as well as providing supporting information on the concept of operations and calculations on water detectability. EMS can uniquely determine the occurrence of intrashell water on Europa, providing important constraints on habitability.
The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems as a function of their physical properties. However, transit surveys like Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn, the most massive planets in our Solar System. To address this deficiency, we perform a fully automated search for long-period exoplanets with only one or two transits in the archival Kepler light curves. When applied to the $sim 40,000$ brightest Sun-like target stars, this search produces 16 long-period exoplanet candidates. Of these candidates, 6 are novel discoveries and 5 are in systems with inner short-period transiting planets. Since our method involves no human intervention, we empirically characterize the detection efficiency of our search. Based on these results, we measure the average occurrence rate of exoplanets smaller than Jupiter with orbital periods in the range 2-25 years to be $2.0pm0.7$ planets per Sun-like star.
To date more than 3500 exoplanets have been discovered orbiting a large variety of stars. Due to the sensitivity limits of the currently used detection techniques, these planets populate zones restricted either to the solar neighbourhood or towards the Galactic bulge. This selection problem prevents us from unveiling the true Galactic planetary population and is not set to change for the next two decades. Here we present a new detection method that overcomes this issue and that will allow us to detect gas giant exoplanets using gravitational wave astronomy. We show that the Laser Interferometer Space Antenna (LISA) mission can characterise hundreds of new circumbinary exoplanets orbiting white dwarf binaries everywhere in our Galaxy - a population of exoplanets so far completely unprobed - as well as detecting extragalactic bound exoplanets in the Magellanic Clouds. Such a method is not limited by stellar activity and, in extremely favourable cases, will allow LISA to detect super-Earths down to 10 Earth masses.
We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hours from May 2009 to Dec 2015. This search focused on narrow-band radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their Habitable Zone. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1- 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrow-band (0.7- 100 Hz) continuous and pulsed signals, with transmitter/receiver relative accelerations from -0.3 to 0.3 m/s^2. A total of 1.9 x 10^8 unique signals requiring immediate follow-up were detected in observations covering more than 8 x 10^6 star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180 - 310 x 10^-26 W / m^2.