No Arabic abstract
We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hours from May 2009 to Dec 2015. This search focused on narrow-band radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their Habitable Zone. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1- 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrow-band (0.7- 100 Hz) continuous and pulsed signals, with transmitter/receiver relative accelerations from -0.3 to 0.3 m/s^2. A total of 1.9 x 10^8 unique signals requiring immediate follow-up were detected in observations covering more than 8 x 10^6 star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180 - 310 x 10^-26 W / m^2.
The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in Northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting surveys of the astrophysical sky and conducting searches for distant technological civilizations. This paper summarizes the design elements of the ATA, the cost savings made possible by the use of COTS components, and the cost/performance trades that eventually enabled this first snapshot radio camera. The fundamental scientific program of this new telescope is varied and exciting; some of the first astronomical results will be discussed.
To explore the hypothesis that KIC 8462852s aperiodic dimming is caused by artificial megastructures in orbit (Wright et al. 2015), rather than a natural cause such as cometary fragments in a highly elliptical orbit (Marengo et al. 2015), we searched for electromagnetic signals from KIC 8462852 indicative of extraterrestrial intelligence. The primary observations were in the visible optical regime using the Boquete Optical SETI Observatory in Panama. In addition, as a preparatory exercise for the possible future detection of a candidate signal (Heidmann 1991), three of six observing runs simultaneously searched radio frequencies at the Allen Telescope Array in California. No periodic optical signals greater than 67 photons/m2 within a time frame of 25 ns were seen. This limit corresponds to isotropic optical pulses of 8E22 joules. If, however, any inhabitants of KIC 8462852 were targeting our solar system (Shostak & Villard 2004), the required energy would be reduced greatly. The limits on narrowband radio signals were 180 - 300 Jy Hz at 1 and 8 GHz, respectively, corresponding to a transmitter with an effective isotropic radiated power of 4E15 W (and 7E15 W) at the distance of KIC 8462852. While these powers requirements are high, even modest targeting could - just as for optical signals - lower these numbers substantially.
We report on a search for the presence of signals from extraterrestrial intelligence in the direction of the star system KIC 8462852. Observations were made at radio frequencies between 1-10 GHz using the Allen Telescope Array. No narrowband radio signals were found at a level of 180-300 Jy in a 1 Hz channel, or medium band signals above 10 Jy in a 100 kHz channel.
We present the results of a survey for low frequency radio emission from 17 known exoplanetary systems with the Murchison Widefield Array. This sample includes 13 systems that have not previously been targeted with radio observations. We detected no radio emission at 154 MHz, and put 3 sigma upper limits in the range 15.2-112.5 mJy on this emission. We also searched for circularly polarised emission and made no detections, obtaining 3 sigma upper limits in the range 3.4-49.9 mJy. These are comparable with the best low frequency radio limits in the existing literature and translate to luminosity limits of between 1.2 x 10^14 W and 1.4 x 10^17 W if the emission is assumed to be 100% circularly polarised. These are the first results from a larger program to systematically search for exoplanetary emission with the MWA.
The Allen Telescope Array (ATA) is a Large-Number-Small-Diameter radio telescope array currently with 42 individual antennas and 5 independent back-end science systems (2 imaging FX correlators and 3 time domain beam formers) located at the Hat Creek Radio Observatory (HCRO). The goal of the ATA is to run multiple back-ends simultaneously, supporting multiple science projects commensally. The primary software control systems are based on a combination of Java, JRuby and Ruby on Rails. The primary control API is simplified to provide easy integration with new back-end systems while the lower layers of the software stack are handled by a master observing system. Scheduling observations for the ATA is based on finding a union between the science needs of multiple projects and automatically determining an efficient path to operating the various sub-components to meet those needs. When completed, the ATA is expected to be a world-class radio telescope, combining dedicated SETI projects with numerous radio astronomy science projects.