No Arabic abstract
S. Baker (2019), B. Barany and A. K{a}enm{a}ki (2019) independently showed that there exist iterated function systems without exact overlaps and there are super-exponentially close cylinders at all small levels. We adapt the method of S. Baker and obtain further examples of this type. We prove that for any algebraic number $betage 2$ there exist real numbers $s, t$ such that the iterated function system $$ left {frac{x}{beta}, frac{x+1}{beta}, frac{x+s}{beta}, frac{x+t}{beta}right } $$ satisfies the above property.
We study random walks on a $d$-dimensional torus by affine expanding maps whose linear parts commute. Assuming an irrationality condition on their translation parts, we prove that the Haar measure is the unique stationary measure. We deduce that if $K subset mathbb{R}^d$ is an attractor of a finite iterated function system of $ngeq 2$ maps of the form $x mapsto D^{-r_i} x + t_i (i=1, ldots, n)$, where $D$ is an expanding $dtimes d$ integer matrix, and is the same for all the maps, and $r_{i} inmathbb{N}$, under an irrationality condition on the translation parts $t_i$, almost every point in $K$ (w.r.t. any Bernoulli measure) has an equidistributed orbit under the map $xmapsto Dx$ (multiplication mod $mathbb{Z}^{d}$). In the one-dimensional case, this conclusion amounts to normality to base $D$. Thus for example, almost every point in an irrational dilation of the middle-thirds Cantor set is normal to base 3.
Complex-valued periodic sequences, u, constructed by Goran Bjorck, are analyzed with regard to the behavior of their discrete periodic narrow-band ambiguity functions A_p(u). The Bjorck sequences, which are defined on Z/pZ for p>2 prime, are unimodular and have zero autocorrelation on (Z/pZ){0}. These two properties give rise to the acronym, CAZAC, to refer to constant amplitude zero autocorrelation sequences. The bound proven is |A_p(u)| leq 2/sqrt{p} + 4/p outside of (0,0), and this is of optimal magnitude given the constraint that u is a CAZAC sequence. The proof requires the full power of Weils exponential sum bound, which, in turn, is a consequence of his proof of the Riemann hypothesis for finite fields. Such bounds are not only of mathematical interest, but they have direct applications as sequences in communications and radar, as well as when the sequences are used as coefficients of phase-coded waveforms.
We show that any equicontractive, self-similar measure arising from the IFS of contractions $(S_{j})$, with self-similar set $[0,1]$, admits an isolated point in its set of local dimensions provided the images of $S_{j}(0,1)$ (suitably) overlap and the minimal probability is associated with one (resp., both) of the endpoint contractions. Examples include $m$-fold convolution products of Bernoulli convolutions or Cantor measures with contraction factor exceeding $1/(m+1)$ in the biased case and $1/m$ in the unbiased case. We also obtain upper and lower bounds on the set of local dimensions for various Bernoulli convolutions.
It is known that the heuristic principle, referred to as the multifractal formalism, need not hold for self-similar measures with overlap, such as the $3$-fold convolution of the Cantor measure and certain Bernoulli convolutions. In this paper we study an important function in the multifractal theory, the $L^{q}$-spectrum, $tau (q)$, for measures of finite type, a class of self-similar measures that includes these examples. Corresponding to each measure, we introduce finitely many variants on the $% L^{q}$-spectrum which arise naturally from the finite type structure and are often easier to understand than $tau $. We show that $tau$ is always bounded by the minimum of these variants and is equal to the minimum variant for $qgeq 0$. This particular variant coincides with the $L^{q}$-spectrum of the measure $mu$ restricted to appropriate subsets of its support. If the IFS satisfies particular structural properties, which do hold for the above examples, then $tau$ is shown to be the minimum of these variants for all $q$. Under certain assumptions on the local dimensions of $mu$, we prove that the minimum variant for $q ll 0$ coincides with the straight line having slope equal to the maximum local dimension of $mu $. Again, this is the case with the examples above. More generally, bounds are given for $tau$ and its variants in terms of notions closely related to the local dimensions of $mu $.
For self-similar sets on $mathbb{R}$ satisfying the exponential separation condition we show that the natural projections of shift invariant ergodic measures is equal to $min{1,frac{h}{-chi}}$, where $h$ and $chi$ are the entropy and Lyapunov exponent respectively. The proof relies on Shmerkins recent result on the $L^{q}$ dimension of self-similar measures. We also use the same method to give results on convolutions and orthogonal projections of ergodic measures projected onto self-similar sets.