Do you want to publish a course? Click here

The $L^q$-spectrum for a class of self-similar measures with overlap

59   0   0.0 ( 0 )
 Added by Kevin Hare
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

It is known that the heuristic principle, referred to as the multifractal formalism, need not hold for self-similar measures with overlap, such as the $3$-fold convolution of the Cantor measure and certain Bernoulli convolutions. In this paper we study an important function in the multifractal theory, the $L^{q}$-spectrum, $tau (q)$, for measures of finite type, a class of self-similar measures that includes these examples. Corresponding to each measure, we introduce finitely many variants on the $% L^{q}$-spectrum which arise naturally from the finite type structure and are often easier to understand than $tau $. We show that $tau$ is always bounded by the minimum of these variants and is equal to the minimum variant for $qgeq 0$. This particular variant coincides with the $L^{q}$-spectrum of the measure $mu$ restricted to appropriate subsets of its support. If the IFS satisfies particular structural properties, which do hold for the above examples, then $tau$ is shown to be the minimum of these variants for all $q$. Under certain assumptions on the local dimensions of $mu$, we prove that the minimum variant for $q ll 0$ coincides with the straight line having slope equal to the maximum local dimension of $mu $. Again, this is the case with the examples above. More generally, bounds are given for $tau$ and its variants in terms of notions closely related to the local dimensions of $mu $.



rate research

Read More

We show that any equicontractive, self-similar measure arising from the IFS of contractions $(S_{j})$, with self-similar set $[0,1]$, admits an isolated point in its set of local dimensions provided the images of $S_{j}(0,1)$ (suitably) overlap and the minimal probability is associated with one (resp., both) of the endpoint contractions. Examples include $m$-fold convolution products of Bernoulli convolutions or Cantor measures with contraction factor exceeding $1/(m+1)$ in the biased case and $1/m$ in the unbiased case. We also obtain upper and lower bounds on the set of local dimensions for various Bernoulli convolutions.
100 - Changhao Chen 2020
S. Baker (2019), B. Barany and A. K{a}enm{a}ki (2019) independently showed that there exist iterated function systems without exact overlaps and there are super-exponentially close cylinders at all small levels. We adapt the method of S. Baker and obtain further examples of this type. We prove that for any algebraic number $betage 2$ there exist real numbers $s, t$ such that the iterated function system $$ left {frac{x}{beta}, frac{x+1}{beta}, frac{x+s}{beta}, frac{x+t}{beta}right } $$ satisfies the above property.
The aim of the article is to prove $L^{p}-L^{q}$ off-diagonal estimates and $L^{p}-L^{q}$ boundedness for operators in the functional calculus of certain perturbed first order differential operators of Dirac type for with $ple q$ in a certain range of exponents. We describe the $L^{p}-L^{q}$ off-diagonal estimates and the $L^{p}-L^{q}$ boundedness in terms of the decay properties of the related holomorphic functions and give a necessary condition for $L^{p}-L^{q}$ boundedness. Applications to Hardy-Littlewood-Sobolev estimates for fractional operators will be given.
201 - Simon Baker 2021
In this paper we prove that if ${varphi_i(x)=lambda x+t_i}$ is an equicontractive iterated function system and $b$ is a positive integer satisfying $frac{log b}{log |lambda|} otinmathbb{Q},$ then almost every $x$ is normal in base $b$ for any non-atomic self-similar measure of ${varphi_i}$.
For self-similar sets on $mathbb{R}$ satisfying the exponential separation condition we show that the natural projections of shift invariant ergodic measures is equal to $min{1,frac{h}{-chi}}$, where $h$ and $chi$ are the entropy and Lyapunov exponent respectively. The proof relies on Shmerkins recent result on the $L^{q}$ dimension of self-similar measures. We also use the same method to give results on convolutions and orthogonal projections of ergodic measures projected onto self-similar sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا