Do you want to publish a course? Click here

Local dimensions of overlapping self-similar measures

100   0   0.0 ( 0 )
 Added by Kevin Hare
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We show that any equicontractive, self-similar measure arising from the IFS of contractions $(S_{j})$, with self-similar set $[0,1]$, admits an isolated point in its set of local dimensions provided the images of $S_{j}(0,1)$ (suitably) overlap and the minimal probability is associated with one (resp., both) of the endpoint contractions. Examples include $m$-fold convolution products of Bernoulli convolutions or Cantor measures with contraction factor exceeding $1/(m+1)$ in the biased case and $1/m$ in the unbiased case. We also obtain upper and lower bounds on the set of local dimensions for various Bernoulli convolutions.



rate research

Read More

It is known that the heuristic principle, referred to as the multifractal formalism, need not hold for self-similar measures with overlap, such as the $3$-fold convolution of the Cantor measure and certain Bernoulli convolutions. In this paper we study an important function in the multifractal theory, the $L^{q}$-spectrum, $tau (q)$, for measures of finite type, a class of self-similar measures that includes these examples. Corresponding to each measure, we introduce finitely many variants on the $% L^{q}$-spectrum which arise naturally from the finite type structure and are often easier to understand than $tau $. We show that $tau$ is always bounded by the minimum of these variants and is equal to the minimum variant for $qgeq 0$. This particular variant coincides with the $L^{q}$-spectrum of the measure $mu$ restricted to appropriate subsets of its support. If the IFS satisfies particular structural properties, which do hold for the above examples, then $tau$ is shown to be the minimum of these variants for all $q$. Under certain assumptions on the local dimensions of $mu$, we prove that the minimum variant for $q ll 0$ coincides with the straight line having slope equal to the maximum local dimension of $mu $. Again, this is the case with the examples above. More generally, bounds are given for $tau$ and its variants in terms of notions closely related to the local dimensions of $mu $.
The upper and lower Assouad dimensions of a metric space are local variants of the box dimensions of the space and provide quantitative information about the `thickest and `thinnest parts of the set. Less extre
201 - Simon Baker 2021
In this paper we prove that if ${varphi_i(x)=lambda x+t_i}$ is an equicontractive iterated function system and $b$ is a positive integer satisfying $frac{log b}{log |lambda|} otinmathbb{Q},$ then almost every $x$ is normal in base $b$ for any non-atomic self-similar measure of ${varphi_i}$.
100 - Changhao Chen 2020
S. Baker (2019), B. Barany and A. K{a}enm{a}ki (2019) independently showed that there exist iterated function systems without exact overlaps and there are super-exponentially close cylinders at all small levels. We adapt the method of S. Baker and obtain further examples of this type. We prove that for any algebraic number $betage 2$ there exist real numbers $s, t$ such that the iterated function system $$ left {frac{x}{beta}, frac{x+1}{beta}, frac{x+s}{beta}, frac{x+t}{beta}right } $$ satisfies the above property.
We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $Asubset mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $sin [p-2, p-1)$, we prove that the order of separation (as $Nto infty$) is the best possible. The same conclusions hold for the points that are a fixed positive distance from the boundary of $A$ whenever $A$ is any $p$-dimensional set. These estimates extend a result of Dahlberg for certain smooth $(p-1)$-dimensional surfaces when $s=p-2$ (the harmonic case). Furthermore, we obtain the same separation results for `greedy $s$-energy points. We deduce our results from an upper regularity property of the $s$-equilibrium measure (i.e., the measure that solves the continuous minimal Riesz $s$-energy problem), and we show that this property holds under a local smoothness assumption on the set $A$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا