No Arabic abstract
We propose a low-scale renormalizable trinification theory that successfully explains the flavor hierarchies and neutrino puzzle in the Standard Model (SM), as well as provides a dark matter candidate and also contains the necessary means for efficient leptogenesis. The proposed theory is based on the trinification $SU{3}{C}times SU{3}{L}times SU{3}{R}$ gauge symmetry, which is supplemented with an additional flavor symmetry $U{X}times Z_{2}^{(1)} times Z_{2}^{(2)}$. In the proposed model the top quark and the exotic fermions acquire tree-level masses, whereas the lighter SM charged fermions gain masses radiatively at one-loop level. In addition, the light active neutrino masses arise from a combination of radiative and type-I seesaw mechanisms, with the Dirac neutrino mass matrix generated at one-loop level.
We have studied dark matter (DM) phenomenology, neutrinoless double beta decay (NDBD) and realised low scale leptogenesis in a simple extension of Standard Model(SM) with three neutral fermions, a scalar doublet and a dark sector incorporating a singlet scalar and a Dirac singlet fermion. A generic model based on $A_4 otimes Z_4$ flavor symmetry is used to explain both normal and inverted hierarchy mass pattern of neutrino and also to accommodate the dark matter mass. In this extension of the $ u$2HDM, the effective neutrino mass observed in 0$ ubetabeta$ is well within the experimental limit provided by KamLAND-ZEN. In order to validate DM within this model, we have checked relic abundance and free streaming length of the dark sector component, i.e. a Dirac singlet fermion constraining its mass in keV range. More importantly we have also realised low scale leptogenesis simultaneously within this framework and also the Dirac CP phase gets constrained with the results. Co-relation among the observable and model parameters are also carried out within this framework.
We study $S_{4}$ flavor symmetric inverse seesaw model which has the possibility of simultaneously addressing neutrino phenomenology, dark matter (DM) and baryon asymmetry of the universe (BAU) through leptogenesis. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile fermions leading to a keV scale sterile neutrino dark matter and two pairs of quasi-Dirac states. The CP violating decay of the lightest quasi- Dirac pair present in the model generates lepton asymmetry which then converts to baryon asymmetry of the universe. Thus this model can provide a simultaneous solution for non zero neutrino mass, dark matter content of the universes and the observed baryon asymmetry. The $S_{4}$ flavor symmetry in this model is augmented by additional $Z_{4}times Z_{3}$ symmetry to constrain the Yukawa Lagrangian. A detailed numerical analysis has been carried out to obtain dark matter mass, DM-active mixing as well as BAU both for normal hierarchy as well as inverted hierarchy. We have tried to correlate the two cosmological observables and found a common parameter space satisfying the DM phenomenology and BAU. The parameter space of the model is further constrained from the latest cosmological bounds on the above mentioned observables.
In the Minimal Supersymmetric Standard Model (MSSM), the scalar neutrino $tilde{ u}_L$ has odd R parity, yet it has long been eliminated as a dark-matter candidate because it scatters elastically off nuclei through the $Z$ boson, yielding a cross section many orders of magnitude above the experimental limit. We show how it can be reinstated as a dark-matter candidate by splitting the masses of its real and imaginary parts in an extension of the MSSM with scalar triplets. As a result, radiative Majorana neutrino masses are also generated. In addition, decays of the scalar triplets relate the abundance of this asymmetric dark matter to the baryon asymmetry of the Universe through leptogenesis.
In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this makes them suitable as dark matter candidates. Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asymmetry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos, and converted to the baryon asymmetry by the electroweak sphalerons. All the characteristic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass scales, are generated radiatively, have a common origin and related to each other via scalar field couplings in perturbation theory.
We study a generic leptophilic $U(1)_X$ extension of the standard model with a light gauge boson. The $U(1)_X$ charge assignments for the leptons are guided by lepton universality violating (LUV) observables in semileptonic $b to sellell$ decays, muon anomalous magnetic moment and the origin of leptonic masses and mixing. Anomaly cancellation conditions require the addition of new chiral fermions in the model, one of which acts as a dark matter (DM) candidate when it is stabilised by an additional $mathcal{Z}_2$ symmetry. From our analysis, we show two different possible models with similar particle content that lead to quite contrasting neutrino mass origin and other phenomenology. The proposed models also have the potential to address the anomalous results in $bto cell u_{ell}$ decays like $R(D), R(D^*)$, electron anomalous magnetic moment and the very recent KOTO anomaly in the kaon sector. We also discuss different possible collider signatures of our models which can be tested in future.