Do you want to publish a course? Click here

Scalar Neutrino as Asymmetric Dark Matter: Radiative Neutrino Mass and Leptogenesis

161   0   0.0 ( 0 )
 Added by Utpal Sarkar
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

In the Minimal Supersymmetric Standard Model (MSSM), the scalar neutrino $tilde{ u}_L$ has odd R parity, yet it has long been eliminated as a dark-matter candidate because it scatters elastically off nuclei through the $Z$ boson, yielding a cross section many orders of magnitude above the experimental limit. We show how it can be reinstated as a dark-matter candidate by splitting the masses of its real and imaginary parts in an extension of the MSSM with scalar triplets. As a result, radiative Majorana neutrino masses are also generated. In addition, decays of the scalar triplets relate the abundance of this asymmetric dark matter to the baryon asymmetry of the Universe through leptogenesis.



rate research

Read More

We investigate an interesting correlation among dark matter phenomenology, neutrino mass generation and GUT baryogenesis, based on the scotogenic model. The model contains additional right-handed neutrinos $N$ and a second Higgs doublet $Phi$, both of which are odd under an imposed $Z_2$ symmetry. The neutral component of $Phi$, i.e. the lightest of the $Z_2$-odd particles, is the dark matter candidate. Due to a Yukawa coupling involving $Phi$, $N$ and the Standard Model leptons, the lepton asymmetry is converted into the dark matter asymmetry so that a non-vanishing $B-L$ asymmetry can arise from $(B-L)$-conserving GUT baryogenesis, leading to a nonzero baryon asymmetry after the sphalerons decouple. On the other hand, $Phi$ can also generate neutrino masses radiatively. In other words, the existence of $Phi$ as the dark matter candidate resuscitates GUT baryogenesis and realizes neutrino masses.
We study $S_{4}$ flavor symmetric inverse seesaw model which has the possibility of simultaneously addressing neutrino phenomenology, dark matter (DM) and baryon asymmetry of the universe (BAU) through leptogenesis. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile fermions leading to a keV scale sterile neutrino dark matter and two pairs of quasi-Dirac states. The CP violating decay of the lightest quasi- Dirac pair present in the model generates lepton asymmetry which then converts to baryon asymmetry of the universe. Thus this model can provide a simultaneous solution for non zero neutrino mass, dark matter content of the universes and the observed baryon asymmetry. The $S_{4}$ flavor symmetry in this model is augmented by additional $Z_{4}times Z_{3}$ symmetry to constrain the Yukawa Lagrangian. A detailed numerical analysis has been carried out to obtain dark matter mass, DM-active mixing as well as BAU both for normal hierarchy as well as inverted hierarchy. We have tried to correlate the two cosmological observables and found a common parameter space satisfying the DM phenomenology and BAU. The parameter space of the model is further constrained from the latest cosmological bounds on the above mentioned observables.
352 - Ernest Ma 2012
A new and radical scenario of the simple 2006 model of radiative neutrino mass is proposed, where there is no seesaw mechanism, i.e. neutrino masses are not inversely proportional to some large mass scale, contrary to the prevalent theoretical thinking. The neutral singlet fermions in the loop have masses of order 10 keV, the lightest of which is absolutely stable and the others are very long-lived. All are components of warm dark matter, which is a possible new paradigm for explaining the structure of the Universe at all scales.
We explore the phenomenology of the Georgi-Machacek model extended with two Higgs doublets and vector fermion doublets invariant under $SU(2)_L times U(1)_Ytimes mathcal {Z}_4 times mathcal {Z}_2$. The $mathcal {Z}_4$ symmetry is broken spontaneously while the imposed $mathcal {Z}_2$ symmetry forbids triplet fields to generate any vacuum expectation value and leading to an inert dark sector providing a viable candidate for dark matter and generate neutrino mass radiatively. Another interesting feature of the model is leptogenesis arising from decay of vector-like fermions. A detailed study of the model is pursued in search for available parameter space consistent with the theoretical and experimental observations for dark matter, neutrino physics, flavor physics, matter-antimatter asymmetry in the Universe.
BLMSSM is the extension of the minimal supersymmetric standard model(MSSM). Its local gauge group is $SU(3)_C times SU(2)_L times U(1)_Y times U(1)_B times U(1)_L$. Supposing the lightest scalar neutrino is dark matter candidate, we study the relic density and the spin independent cross section of sneutrino scattering off nucleon. We calculate the numerical results in detail and find suitable parameter space. The numerical discussion can confine the parameter space and provide a reference for dark matter research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا