Do you want to publish a course? Click here

REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets

86   0   0.0 ( 0 )
 Added by Angelina Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Machine learning models are known to perpetuate and even amplify the biases present in the data. However, these data biases frequently do not become apparent until after the models are deployed. Our work tackles this issue and enables the preemptive analysis of large-scale datasets. REVISE (REvealing VIsual biaSEs) is a tool that assists in the investigation of a visual dataset, surfacing potential biases along three dimensions: (1) object-based, (2) person-based, and (3) geography-based. Object-based biases relate to the size, context, or diversity of the depicted objects. Person-based metrics focus on analyzing the portrayal of people within the dataset. Geography-based analyses consider the representation of different geographic locations. These three dimensions are deeply intertwined in how they interact to bias a dataset, and REVISE sheds light on this; the responsibility then lies with the user to consider the cultural and historical context, and to determine which of the revealed biases may be problematic. The tool further assists the user by suggesting actionable steps that may be taken to mitigate the revealed biases. Overall, the key aim of our work is to tackle the machine learning bias problem early in the pipeline. REVISE is available at https://github.com/princetonvisualai/revise-tool



rate research

Read More

In this work, we present a framework to measure and mitigate intrinsic biases with respect to protected variables --such as gender-- in visual recognition tasks. We show that trained models significantly amplify the association of target labels with gender beyond what one would expect from biased datasets. Surprisingly, we show that even when datasets are balanced such that each label co-occurs equally with each gender, learned models amplify the association between labels and gender, as much as if data had not been balanced! To mitigate this, we adopt an adversarial approach to remove unwanted features corresponding to protected variables from intermediate representations in a deep neural network -- and provide a detailed analysis of its effectiveness. Experiments on two datasets: the COCO dataset (objects), and the imSitu dataset (actions), show reductions in gender bias amplification while maintaining most of the accuracy of the original models.
Image captioning has made substantial progress with huge supporting image collections sourced from the web. However, recent studies have pointed out that captioning datasets, such as COCO, contain gender bias found in web corpora. As a result, learning models could heavily rely on the learned priors and image context for gender identification, leading to incorrect or even offensive errors. To encourage models to learn correct gender features, we reorganize the COCO dataset and present two new splits COCO-GB V1 and V2 datasets where the train and test sets have different gender-context joint distribution. Models relying on contextual cues will suffer from huge gender prediction errors on the anti-stereotypical test data. Benchmarking experiments reveal that most captioning models learn gender bias, leading to high gender prediction errors, especially for women. To alleviate the unwanted bias, we propose a new Guided Attention Image Captioning model (GAIC) which provides self-guidance on visual attention to encourage the model to capture correct gender visual evidence. Experimental results validate that GAIC can significantly reduce gender prediction errors with a competitive caption quality. Our codes and the designed benchmark datasets are available at https://github.com/datamllab/Mitigating_Gender_Bias_In_Captioning_System.
The performance of a computer vision model depends on the size and quality of its training data. Recent studies have unveiled previously-unknown composition biases in common image datasets which then lead to skewed model outputs, and have proposed methods to mitigate these biases. However, most existing works assume that human-generated annotations can be considered gold-standard and unbiased. In this paper, we reveal that this assumption can be problematic, and that special care should be taken to prevent models from learning such annotation biases. We focus on facial expression recognition and compare the label biases between lab-controlled and in-the-wild datasets. We demonstrate that many expression datasets contain significant annotation biases between genders, especially when it comes to the happy and angry expressions, and that traditional methods cannot fully mitigate such biases in trained models. To remove expression annotation bias, we propose an AU-Calibrated Facial Expression Recognition (AUC-FER) framework that utilizes facial action units (AUs) and incorporates the triplet loss into the objective function. Experimental results suggest that the proposed method is more effective in removing expression annotation bias than existing techniques.
Face recognition networks encode information about sensitive attributes while being trained for identity classification. Such encoding has two major issues: (a) it makes the face representations susceptible to privacy leakage (b) it appears to contribute to bias in face recognition. However, existing bias mitigation approaches generally require end-to-end training and are unable to achieve high verification accuracy. Therefore, we present a descriptor-based adversarial de-biasing approach called `Protected Attribute Suppression System (PASS). PASS can be trained on top of descriptors obtained from any previously trained high-performing network to classify identities and simultaneously reduce encoding of sensitive attributes. This eliminates the need for end-to-end training. As a component of PASS, we present a novel discriminator training strategy that discourages a network from encoding protected attribute information. We show the efficacy of PASS to reduce gender and skintone information in descriptors from SOTA face recognition networks like Arcface. As a result, PASS descriptors outperform existing baselines in reducing gender and skintone bias on the IJB-C dataset, while maintaining a high verification accuracy.
Visual arts are of inestimable importance for the cultural, historic and economic growth of our society. One of the building blocks of most analysis in visual arts is to find similarity relationships among paintings of different artists and painting schools. To help art historians better understand visual arts, this paper presents a framework for visual link retrieval and knowledge discovery in digital painting datasets. Visual link retrieval is accomplished by using a deep convolutional neural network to perform feature extraction and a fully unsupervised nearest neighbor mechanism to retrieve links among digitized paintings. Historical knowledge discovery is achieved by performing a graph analysis that makes it possible to study influences among artists. An experimental evaluation on a database collecting paintings by very popular artists shows the effectiveness of the method. The unsupervised strategy makes the method interesting especially in cases where metadata are scarce, unavailable or difficult to collect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا