No Arabic abstract
The performance of a computer vision model depends on the size and quality of its training data. Recent studies have unveiled previously-unknown composition biases in common image datasets which then lead to skewed model outputs, and have proposed methods to mitigate these biases. However, most existing works assume that human-generated annotations can be considered gold-standard and unbiased. In this paper, we reveal that this assumption can be problematic, and that special care should be taken to prevent models from learning such annotation biases. We focus on facial expression recognition and compare the label biases between lab-controlled and in-the-wild datasets. We demonstrate that many expression datasets contain significant annotation biases between genders, especially when it comes to the happy and angry expressions, and that traditional methods cannot fully mitigate such biases in trained models. To remove expression annotation bias, we propose an AU-Calibrated Facial Expression Recognition (AUC-FER) framework that utilizes facial action units (AUs) and incorporates the triplet loss into the objective function. Experimental results suggest that the proposed method is more effective in removing expression annotation bias than existing techniques.
This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$times$ faster inference with compressed data.
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance in some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.
Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance caused by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets.
In this paper, covariance matrices are exploited to encode the deep convolutional neural networks (DCNN) features for facial expression recognition. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By performing the classification of the facial expressions using Gaussian kernel on SPD manifold, we show that the covariance descriptors computed on DCNN features are more efficient than the standard classification with fully connected layers and softmax. By implementing our approach using the VGG-face and ExpNet architectures with extensive experiments on the Oulu-CASIA and SFEW datasets, we show that the proposed approach achieves performance at the state of the art for facial expression recognition.
Since the renaissance of deep learning (DL), facial expression recognition (FER) has received a lot of interest, with continual improvement in the performance. Hand-in-hand with performance, new challenges have come up. Modern FER systems deal with face images captured under uncontrolled conditions (also called in-the-wild scenario) including occlusions and pose variations. They successfully handle such conditions using deep networks that come with various components like transfer learning, attention mechanism and local-global context extractor. However, these deep networks are highly complex with large number of parameters, making them unfit to be deployed in real scenarios. Is it possible to build a light-weight network that can still show significantly good performance on FER under in-the-wild scenario? In this work, we methodically build such a network and call it as Imponderous Net. We leverage on the aforementioned components of deep networks for FER, and analyse, carefully choose and fit them to arrive at Imponderous Net. Our Imponderous Net is a low calorie net with only 1.45M parameters, which is almost 50x less than that of a state-of-the-art (SOTA) architecture. Further, during inference, it can process at the real time rate of 40 frames per second (fps) in an intel-i7 cpu. Though it is low calorie, it is still power packed in its performance, overpowering other light-weight architectures and even few high capacity architectures. Specifically, Imponderous Net reports 87.09%, 88.17% and 62.06% accuracies on in-the-wild datasets RAFDB, FERPlus and AffectNet respectively. It also exhibits superior robustness under occlusions and pose variations in comparison to other light-weight architectures from the literature.