No Arabic abstract
As a milestone for general-purpose computing machines, we demonstrate that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware. Moreover, on noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates instead of a restricted set of standard gates. We demonstrate the general methodology by solving a cubic interaction problem, which appears in nonlinear optics, gauge theories, as well as plasma and fluid dynamics. To encode the nonnative Hamiltonian evolution, we decompose the Hilbert space into a direct sum of invariant subspaces in which the nonlinear problem is mapped to a finite-dimensional Hamiltonian simulation problem. In a three-states example, the resultant unitary evolution is realized by a product of ~20 standard gates, using which ~10 simulation steps can be carried out on state-of-the-art quantum hardware before results are corrupted by decoherence. In comparison, the simulation depth is improved by more than an order of magnitude when the unitary evolution is realized as a single cubic gate, which is compiled directly using optimal control. Alternatively, parametric gates may also be compiled by interpolating control pulses. Modular gates thus obtained provide high-fidelity building blocks for quantum Hamiltonian simulations.
ArQTiC is an open-source, full-stack software package built for the simulations of materials on quantum computers. It currently can simulate materials that can be modeled by any Hamiltonian derived from a generic, one-dimensional, time-dependent Heisenberg Hamiltonain. ArQTiC includes modules for generating quantum programs for real- and imaginary-time evolution, quantum circuit optimization, connection to various quantum backends via the cloud, and post-processing of quantum results. By enabling users to seamlessly perform and analyze materials simulations on quantum computers by simply providing a minimal input text file, ArQTiC opens this field to a broader community of scientists from a wider range of scientific domains.
We propose a realistic hybrid classical-quantum linear solver to solve systems of linear equations of a specific type, and demonstrate its feasibility using Qiskit on IBM Q systems. This algorithm makes use of quantum random walk that runs in $mathcal{O}(Nlog(N))$ time on a quantum circuit made of $mathcal{O}(log(N))$ qubits. The input and output are classical data, and so can be easily accessed. It is robust against noise, and ready for implementation in applications such as machine learning.
The abstract notion of a Universal Turing machine cannot exist as a physical subsystem without the introduction of noise from an external energy source. Like all other physical systems, physical Turing machines must convert energy sourced from an external environment into useful work, thus subjecting them to the laws of thermodynamics. Consequently, asymptotic mathematical theorems including those derived by Godel and Turing do not bear any consequence on physical world because they can never be truly realised in physical systems. Rather these theorems highlight the seemingly unbridgeable chasm between Platonic forms (mathematics) and objects (physics).
Simulating quantum circuits with classical computers requires resources growing exponentially in terms of system size. Real quantum computer with noise, however, may be simulated polynomially with various methods considering different noise models. In this work, we simulate random quantum circuits in 1D with Matrix Product Density Operators (MPDO), for different noise models such as dephasing, depolarizing, and amplitude damping. We show that the method based on Matrix Product States (MPS) fails to approximate the noisy output quantum states for any of the noise models considered, while the MPDO method approximates them well. Compared with the method of Matrix Product Operators (MPO), the MPDO method reflects a clear physical picture of noise (with inner indices taking care of the noise simulation) and quantum entanglement (with bond indices taking care of two-qubit gate simulation). Consequently, in case of weak system noise, the resource cost of MPDO will be significantly less than that of the MPO due to a relatively small inner dimension needed for the simulation. In case of strong system noise, a relatively small bond dimension may be sufficient to simulate the noisy circuits, indicating a regime that the noise is large enough for an `easy classical simulation. Moreover, we propose a more effective tensor updates scheme with optimal truncations for both the inner and the bond dimensions, performed after each layer of the circuit, which enjoys a canonical form of the MPDO for improving simulation accuracy. With truncated inner dimension to a maximum value $kappa$ and bond dimension to a maximum value $chi$, the cost of our simulation scales as $sim NDkappa^3chi^3$, for an $N$-qubit circuit with depth $D$.
Variational quantum eigensolver (VQE) is promising to show quantum advantage on near-term noisy-intermediate-scale quantum (NISQ) computers. One central problem of VQE is the effect of noise, especially the physical noise on realistic quantum computers. We study systematically the effect of noise for the VQE algorithm, by performing numerical simulations with various local noise models, including the amplitude damping, dephasing, and depolarizing noise. We show that the ground state energy will deviate from the exact value as the noise probability increase and normally noise will accumulate as the circuit depth increase. We build a noise model to capture the noise in a real quantum computer. Our numerical simulation is consistent with the quantum experiment results on IBM Quantum computers through Cloud. Our work sheds new light on the practical research of noisy VQE. The deep understanding of the noise effect of VQE may help to develop quantum error mitigation techniques on near team quantum computers.