No Arabic abstract
We propose a realistic hybrid classical-quantum linear solver to solve systems of linear equations of a specific type, and demonstrate its feasibility using Qiskit on IBM Q systems. This algorithm makes use of quantum random walk that runs in $mathcal{O}(Nlog(N))$ time on a quantum circuit made of $mathcal{O}(log(N))$ qubits. The input and output are classical data, and so can be easily accessed. It is robust against noise, and ready for implementation in applications such as machine learning.
Trapped ions (TI) are a leading candidate for building Noisy Intermediate-Scale Quantum (NISQ) hardware. TI qubits have fundamental advantages over other technologies such as superconducting qubits, including high qubit quality, coherence and connectivity. However, current TI systems are small in size, with 5-20 qubits and typically use a single trap architecture which has fundamental scalability limitations. To progress towards the next major milestone of 50-100 qubits, a modular architecture termed the Quantum Charge Coupled Device (QCCD) has been proposed. In a QCCD-based TI device, small traps are connected through ion shuttling. While the basic hardware components for such devices have been demonstrated, building a 50-100 qubit system is challenging because of a wide range of design possibilities for trap sizing, communication topology and gate implementations and the need to match diverse application resource requirements. Towards realizing QCCD systems with 50-100 qubits, we perform an extensive architectural study evaluating the key design choices of trap sizing, communication topology and operation implementation methods. We built a design toolflow which takes a QCCD architectures parameters as input, along with a set of applications and realistic hardware performance models. Our toolflow maps the applications onto the target device and simulates their execution to compute metrics such as application run time, reliability and device noise rates. Using six applications and several hardware design points, we show that trap sizing and communication topology choices can impact application reliability by up to three orders of magnitude. Microarchitectural gate implementation choices influence reliability by another order of magnitude. From these studies, we provide concrete recommendations to tune these choices to achieve highly reliable and performant application executions.
Previously proposed quantum algorithms for solving linear systems of equations cannot be implemented in the near term due to the required circuit depth. Here, we propose a hybrid quantum-classical algorithm, called Variational Quantum Linear Solver (VQLS), for solving linear systems on near-term quantum computers. VQLS seeks to variationally prepare $|xrangle$ such that $A|xranglepropto|brangle$. We derive an operationally meaningful termination condition for VQLS that allows one to guarantee that a desired solution precision $epsilon$ is achieved. Specifically, we prove that $C geq epsilon^2 / kappa^2$, where $C$ is the VQLS cost function and $kappa$ is the condition number of $A$. We present efficient quantum circuits to estimate $C$, while providing evidence for the classical hardness of its estimation. Using Rigettis quantum computer, we successfully implement VQLS up to a problem size of $1024times1024$. Finally, we numerically solve non-trivial problems of size up to $2^{50}times2^{50}$. For the specific examples that we consider, we heuristically find that the time complexity of VQLS scales efficiently in $epsilon$, $kappa$, and the system size $N$.
Crosstalk is a major source of noise in Noisy Intermediate-Scale Quantum (NISQ) systems and is a fundamental challenge for hardware design. When multiple instructions are executed in parallel, crosstalk between the instructions can corrupt the quantum state and lead to incorrect program execution. Our goal is to mitigate the application impact of crosstalk noise through software techniques. This requires (i) accurate characterization of hardware crosstalk, and (ii) intelligent instruction scheduling to serialize the affected operations. Since crosstalk characterization is computationally expensive, we develop optimizations which reduce the characterization overhead. On three 20-qubit IBMQ systems, we demonstrate two orders of magnitude reduction in characterization time (compute time on the QC device) compared to all-pairs crosstalk measurements. Informed by these characterization, we develop a scheduler that judiciously serializes high crosstalk instructions balancing the need to mitigate crosstalk and exponential decoherence errors from serialization. On real-system runs on three IBMQ systems, our scheduler improves the error rate of application circuits by up to 5.6x, compared to the IBM instruction scheduler and offers near-optimal crosstalk mitigation in practice. In a broader picture, the difficulty of mitigating crosstalk has recently driven QC vendors to move towards sparser qubit connectivity or disabling nearby operations entirely in hardware, which can be detrimental to performance. Our work makes the case for software mitigation of crosstalk errors.
Variational Hybrid Quantum Classical Algorithms (VHQCAs) are a class of quantum algorithms intended to run on noisy intermediate-scale quantum (NISQ) devices. These algorithms employ a parameterized quantum circuit (ansatz) and a quantum-classical feedback loop. A classical device is used to optimize the parameters in order to minimize a cost function that can be computed far more efficiently on a quantum device. The cost function is constructed such that finding the ansatz parameters that minimize its value, solves some problem of interest. We focus specifically on the Variational Quantum Linear Solver (VQLS), and examine the effect of several gradient-free and gradient-based classical optimizers on performance. We focus on both the average rate of convergence of the classical optimizers studied, as well as the distribution of their average termination cost values, and how these are affected by noise. Our work demonstrates that realistic noise levels on NISQ devices present a challenge to the optimization process. All classical optimizers appear to be very negatively affected by the presence of realistic noise. If noise levels are significantly improved, there may be a good reason for preferring gradient-based methods in the future, which performed better than the gradient-free methods with the only shot-noise present. The gradient-free optimizers, Simultaneous Perturbation Stochastic Approximation (SPSA) and Powells method, and the gradient-based optimizers, AMSGrad and BFGS performed the best in the noisy simulation, and appear to be less affected by noise than the rest of the methods. SPSA appears to be the best performing method. COBYLA, Nelder-Mead and Conjugate-Gradient methods appear to be the most heavily affected by noise, with even slight noise levels significantly impacting their performance.
As a milestone for general-purpose computing machines, we demonstrate that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware. Moreover, on noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates instead of a restricted set of standard gates. We demonstrate the general methodology by solving a cubic interaction problem, which appears in nonlinear optics, gauge theories, as well as plasma and fluid dynamics. To encode the nonnative Hamiltonian evolution, we decompose the Hilbert space into a direct sum of invariant subspaces in which the nonlinear problem is mapped to a finite-dimensional Hamiltonian simulation problem. In a three-states example, the resultant unitary evolution is realized by a product of ~20 standard gates, using which ~10 simulation steps can be carried out on state-of-the-art quantum hardware before results are corrupted by decoherence. In comparison, the simulation depth is improved by more than an order of magnitude when the unitary evolution is realized as a single cubic gate, which is compiled directly using optimal control. Alternatively, parametric gates may also be compiled by interpolating control pulses. Modular gates thus obtained provide high-fidelity building blocks for quantum Hamiltonian simulations.