No Arabic abstract
Variational quantum eigensolver (VQE) is promising to show quantum advantage on near-term noisy-intermediate-scale quantum (NISQ) computers. One central problem of VQE is the effect of noise, especially the physical noise on realistic quantum computers. We study systematically the effect of noise for the VQE algorithm, by performing numerical simulations with various local noise models, including the amplitude damping, dephasing, and depolarizing noise. We show that the ground state energy will deviate from the exact value as the noise probability increase and normally noise will accumulate as the circuit depth increase. We build a noise model to capture the noise in a real quantum computer. Our numerical simulation is consistent with the quantum experiment results on IBM Quantum computers through Cloud. Our work sheds new light on the practical research of noisy VQE. The deep understanding of the noise effect of VQE may help to develop quantum error mitigation techniques on near team quantum computers.
The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision $epsilon$, QPE requires $O(1)$ repetitions of circuits with depth $O(1/epsilon)$, whereas each expectation estimation subroutine within VQE requires $O(1/epsilon^{2})$ samples from circuits with depth $O(1)$. We propose a generalised VQE algorithm that interpolates between these two regimes via a free parameter $alphain[0,1]$ which can exploit quantum coherence over a circuit depth of $O(1/epsilon^{alpha})$ to reduce the number of samples to $O(1/epsilon^{2(1-alpha)})$. Along the way, we give a new routine for expectation estimation under limited quantum resources that is of independent interest.
A family of Variational Quantum Eigensolver (VQE) methods is designed to maximize the resource of existing noisy intermediate-scale quantum (NISQ) devices. However, VQE approaches encounter various difficulties in simulating molecules of industrially relevant sizes, among which the choice of the ansatz for the molecular wavefunction plays a crucial role. In this work, we push forward the capabilities of adaptive variational algorithms (ADAPT-VQE) by demonstrating that the measurement overhead can be significantly reduced via adding multiple operators at each step while keeping the ansatz compact. Within the proposed approach, we simulate a set of molecules, O$_2$, CO, and CO$_2$, participating in the carbon monoxide oxidation processes using the statevector simulator and compare our findings with the results obtained using VQE-UCCSD and classical methods. Based on these results, we estimate the energy characteristics of the chemical reaction. Our results pave the way to the use of variational approaches for solving practically relevant chemical problems.
The variational quantum eigensolver (VQE) is one of the most promising algorithms to find eigenvalues and eigenvectors of a given Hamiltonian on noisy intermediate-scale quantum (NISQ) devices. A particular application is to obtain ground or excited states of molecules. The practical realization is currently limited by the complexity of quantum circuits. Here we present a novel approach to reduce quantum circuit complexity in VQE for electronic structure calculations. Our algorithm, called ClusterVQE, splits the initial qubit space into subspaces (qubit clusters) which are further distributed on individual (shallower) quantum circuits. The clusters are obtained based on quantum mutual information reflecting maximal entanglement between qubits, whereas entanglement between different clusters is taken into account via a new dressed Hamiltonian. ClusterVQE therefore allows exact simulation of the problem by using fewer qubits and shallower circuit depth compared to standard VQE at the cost of additional classical resources. In addition, a new gradient measurement method without using an ancillary qubit is also developed in this work. Proof-of-principle demonstrations are presented for several molecular systems based on quantum simulators as well as an IBM quantum device with accompanying error mitigation. The efficiency of the new algorithm is comparable to or even improved over qubit-ADAPT-VQE and iterative Qubit Coupled Cluster (iQCC), state-of-the-art circuit-efficient VQE methods to obtain variational ground state energies of molecules on NISQ hardware. Above all, the new ClusterVQE algorithm simultaneously reduces the number of qubits and circuit depth, making it a potential leader for quantum chemistry simulations on NISQ devices.
The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the noisy intermediate-size quantum (NISQ) era, and is generally speculated to deliver one of the first quantum advantages for the ground-state simulations of some non-trivial Hamiltonians. However, short quantum coherence time and limited availability of quantum hardware resources in the NISQ hardware strongly restrain the capacity and expressiveness of VQEs. In this Letter, we introduce the variational quantum-neural hybrid eigensolver (VQNHE) in which the shallow-circuit quantum ansatz can be further enhanced by classical post-processing with neural networks. We show that VQNHE consistently and significantly outperforms VQE in simulating ground-state energies of quantum spins and molecules given the same amount of quantum resources. More importantly, we demonstrate that for arbitrary post-processing neural functions, VQNHE only incurs an polynomial overhead of processing time and represents the first scalable method to exponentially accelerate VQE with non-unitary post-processing that can be efficiently implemented in the NISQ era.
Hybrid quantum-classical algorithms have been proposed as a potentially viable application of quantum computers. A particular example - the variational quantum eigensolver, or VQE - is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian, which makes it appealing for the needs of quantum chemistry. Experimental realizations have been reported in recent years and theoretical estimates of its efficiency are a subject of intense effort. Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions with competing nearest- and next-nearest-neighbor interactions. We find that recovering the VQE solution allows one to obtain the correlation function of the ground state consistent with the exact result. We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits. Our results are consistent with the current knowledge about the barren plateaus in quantum optimization.