Do you want to publish a course? Click here

When, Where, and What? A New Dataset for Anomaly Detection in Driving Videos

145   0   0.0 ( 0 )
 Added by Yu Yao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Video anomaly detection (VAD) has been extensively studied. However, research on egocentric traffic videos with dynamic scenes lacks large-scale benchmark datasets as well as effective evaluation metrics. This paper proposes traffic anomaly detection with a textit{when-where-what} pipeline to detect, localize, and recognize anomalous events from egocentric videos. We introduce a new dataset called Detection of Traffic Anomaly (DoTA) containing 4,677 videos with temporal, spatial, and categorical annotations. A new spatial-temporal area under curve (STAUC) evaluation metric is proposed and used with DoTA. State-of-the-art methods are benchmarked for two VAD-related tasks.Experimental results show STAUC is an effective VAD metric. To our knowledge, DoTA is the largest traffic anomaly dataset to-date and is the first supporting traffic anomaly studies across when-where-what perspectives. Our code and dataset can be found in: https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly



rate research

Read More

We review the current state of empirical knowledge of the total budget of baryonic matter in the Universe as observed since the epoch of reionization. Our summary examines on three milestone redshifts since the reionization of H in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the observational techniques used to discover and characterize the phases of baryons. In the spirit of the meeting, the level is aimed at a diverse and non-expert audience and additional attention is given to describe how space missions expected to launch within the next decade will impact this scientific field.
Inexpensive sensing and computation, as well as insurance innovations, have made smart dashboard cameras ubiquitous. Increasingly, simple model-driven computer vision algorithms focused on lane departures or safe following distances are finding their way into these devices. Unfortunately, the long-tailed distribution of road hazards means that these hand-crafted pipelines are inadequate for driver safety systems. We propose to apply data-driven anomaly detection ideas from deep learning to dashcam videos, which hold the promise of bridging this gap. Unfortunately, there exists almost no literature applying anomaly understanding to moving cameras, and correspondingly there is also a lack of relevant datasets. To counter this issue, we present a large and diverse dataset of truck dashcam videos, namely RetroTrucks, that includes normal and anomalous driving scenes. We apply: (i) one-class classification loss and (ii) reconstruction-based loss, for anomaly detection on RetroTrucks as well as on existing static-camera datasets. We introduce formulations for modeling object interactions in this context as priors. Our experiments indicate that our dataset is indeed more challenging than standard anomaly detection datasets, and previous anomaly detection methods do not perform well here out-of-the-box. In addition, we share insights into the behavior of these two important families of anomaly detection approaches on dashcam data.
74 - Yi Zhang , Lu Zhang , Jing Zhang 2021
Salient human detection (SHD) in dynamic 360{deg} immersive videos is of great importance for various applications such as robotics, inter-human and human-object interaction in augmented reality. However, 360{deg} video SHD has been seldom discussed in the computer vision community due to a lack of datasets with large-scale omnidirectional videos and rich annotations. To this end, we propose SHD360, the first 360{deg} video SHD dataset which contains various real-life daily scenes. Our SHD360 provides six-level hierarchical annotations for 6,268 key frames uniformly sampled from 37,403 omnidirectional video frames at 4K resolution. Specifically, each collected frame is labeled with a super-class, a sub-class, associated attributes (e.g., geometrical distortion), bounding boxes and per-pixel object-/instance-level masks. As a result, our SHD360 contains totally 16,238 salient human instances with manually annotated pixel-wise ground truth. Since so far there is no method proposed for 360{deg} image/video SHD, we systematically benchmark 11 representative state-of-the-art salient object detection (SOD) approaches on our SHD360, and explore key issues derived from extensive experimenting results. We hope our proposed dataset and benchmark could serve as a good starting point for advancing human-centric researches towards 360{deg} panoramic data. Our dataset and benchmark is publicly available at https://github.com/PanoAsh/SHD360.
Numerous powerful point process models have been developed to understand temporal patterns in sequential data from fields such as health-care, electronic commerce, social networks, and natural disaster forecasting. In this paper, we develop novel models for learning the temporal distribution of human activities in streaming data (e.g., videos and person trajectories). We propose an integrated framework of neural networks and temporal point processes for predicting when the next activity will happen. Because point processes are limited to taking event frames as input, we propose a simple yet effective mechanism to extract features at frames of interest while also preserving the rich information in the remaining frames. We evaluate our model on two challenging datasets. The results show that our model outperforms traditional statistical point process approaches significantly, demonstrating its effectiveness in capturing the underlying temporal dynamics as well as the correlation within sequential activities. Furthermore, we also extend our model to a joint estimation framework for predicting the timing, spatial location, and category of the activity simultaneously, to answer the when, where, and what of activity prediction.
The inability of state-of-the-art semantic segmentation methods to detect anomaly instances hinders them from being deployed in safety-critical and complex applications, such as autonomous driving. Recent approaches have focused on either leveraging segmentation uncertainty to identify anomalous areas or re-synthesizing the image from the semantic label map to find dissimilarities with the input image. In this work, we demonstrate that these two methodologies contain complementary information and can be combined to produce robust predictions for anomaly segmentation. We present a pixel-wise anomaly detection framework that uses uncertainty maps to improve over existing re-synthesis methods in finding dissimilarities between the input and generated images. Our approach works as a general framework around already trained segmentation networks, which ensures anomaly detection without compromising segmentation accuracy, while significantly outperforming all similar methods. Top-2 performance across a range of different anomaly datasets shows the robustness of our approach to handling different anomaly instances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا