No Arabic abstract
Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service, is increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.
Due to the advanced capabilities of the Internet of Vehicles (IoV) components such as vehicles, Roadside Units (RSUs) and smart devices as well as the increasing amount of data generated, Federated Learning (FL) becomes a promising tool given that it enables privacy-preserving machine learning that can be implemented in the IoV. However, the performance of the FL suffers from the failure of communication links and missing nodes, especially when continuous exchanges of model parameters are required. Therefore, we propose the use of Unmanned Aerial Vehicles (UAVs) as wireless relays to facilitate the communications between the IoV components and the FL server and thus improving the accuracy of the FL. However, a single UAV may not have sufficient resources to provide services for all iterations of the FL process. In this paper, we present a joint auction-coalition formation framework to solve the allocation of UAV coalitions to groups of IoV components. Specifically, the coalition formation game is formulated to maximize the sum of individual profits of the UAVs. The joint auction-coalition formation algorithm is proposed to achieve a stable partition of UAV coalitions in which an auction scheme is applied to solve the allocation of UAV coalitions. The auction scheme is designed to take into account the preferences of IoV components over heterogeneous UAVs. The simulation results show that the grand coalition, where all UAVs join a single coalition, is not always stable due to the profit-maximizing behavior of the UAVs. In addition, we show that as the cooperation cost of the UAVs increases, the UAVs prefer to support the IoV components independently and not to form any coalition.
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.
Federated Deep Learning (FDL) is helping to realize distributed machine learning in the Internet of Vehicles (IoV). However, FDLs global model needs multiple clients to upload learning model parameters, thus still existing unavoidable communication overhead and data privacy risks. The recently proposed Swarm Learning (SL) provides a decentralized machine-learning approach uniting edge computing and blockchain-based coordination without the need for a central coordinator. This paper proposes a Swarm-Federated Deep Learning framework in the IoV system (IoV-SFDL) that integrates SL into the FDL framework. The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL, then aggregates the global FDL model among different SL groups with a proposed credibility weights prediction algorithm. Extensive experimental results demonstrate that compared with the baseline frameworks, the proposed IoV-SFDL framework achieves a 16.72% reduction in edge-to-global communication overhead while improving about 5.02% in model performance with the same training iterations.
Federated learning (FL) can empower Internet-of-Vehicles (IoV) networks by leveraging smart vehicles (SVs) to participate in the learning process with minimum data exchanges and privacy disclosure. The collected data and learned knowledge can help the vehicular service provider (VSP) improve the global model accuracy, e.g., for road safety as well as better profits for both VSP and participating SVs. Nonetheless, there exist major challenges when implementing the FL in IoV networks, such as dynamic activities and diverse quality-of-information (QoI) from a large number of SVs, VSPs limited payment budget, and profit competition among SVs. In this paper, we propose a novel dynamic FL-based economic framework for an IoV network to address these challenges. Specifically, the VSP first implements an SV selection method to determine a set of the best SVs for the FL process according to the significance of their current locations and information history at each learning round. Then, each selected SV can collect on-road information and offer a payment contract to the VSP based on its collected QoI. For that, we develop a multi-principal one-agent contract-based policy to maximize the profits of the VSP and learning SVs under the VSPs limited payment budget and asymmetric information between the VSP and SVs. Through experimental results using real-world on-road datasets, we show that our framework can converge 57% faster (even with only 10% of active SVs in the network) and obtain much higher social welfare of the network (up to 27.2 times) compared with those of other baseline FL methods.
In this letter, we propose a multi-task over-theair federated learning (MOAFL) framework, where multiple learning tasks share edge devices for data collection and learning models under the coordination of a edge server (ES). Specially, the model updates for all the tasks are transmitted and superpositioned concurrently over a non-orthogonal uplink channel via over-the-air computation, and the aggregation results of all the tasks are reconstructed at the ES through an extended version of the turbo compressed sensing algorithm. Both the convergence analysis and numerical results demonstrate that the MOAFL framework can significantly reduce the uplink bandwidth consumption of multiple tasks without causing substantial learning performance degradation.