Do you want to publish a course? Click here

Dynamic Federated Learning-Based Economic Framework for Internet-of-Vehicles

166   0   0.0 ( 0 )
 Added by Yuris Mulya Saputra
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Federated learning (FL) can empower Internet-of-Vehicles (IoV) networks by leveraging smart vehicles (SVs) to participate in the learning process with minimum data exchanges and privacy disclosure. The collected data and learned knowledge can help the vehicular service provider (VSP) improve the global model accuracy, e.g., for road safety as well as better profits for both VSP and participating SVs. Nonetheless, there exist major challenges when implementing the FL in IoV networks, such as dynamic activities and diverse quality-of-information (QoI) from a large number of SVs, VSPs limited payment budget, and profit competition among SVs. In this paper, we propose a novel dynamic FL-based economic framework for an IoV network to address these challenges. Specifically, the VSP first implements an SV selection method to determine a set of the best SVs for the FL process according to the significance of their current locations and information history at each learning round. Then, each selected SV can collect on-road information and offer a payment contract to the VSP based on its collected QoI. For that, we develop a multi-principal one-agent contract-based policy to maximize the profits of the VSP and learning SVs under the VSPs limited payment budget and asymmetric information between the VSP and SVs. Through experimental results using real-world on-road datasets, we show that our framework can converge 57% faster (even with only 10% of active SVs in the network) and obtain much higher social welfare of the network (up to 27.2 times) compared with those of other baseline FL methods.



rate research

Read More

With the incoming introduction of 5G networks and the advancement in technologies, such as Network Function Virtualization and Software Defined Networking, new and emerging networking technologies and use cases are taking shape. One such technology is the Internet of Vehicles (IoV), which describes an interconnected system of vehicles and infrastructure. Coupled with recent developments in artificial intelligence and machine learning, the IoV is transformed into an Intelligent Transportation System (ITS). There are, however, several operational considerations that hinder the adoption of ITS systems, including scalability, high availability, and data privacy. To address these challenges, Federated Learning, a collaborative and distributed intelligence technique, is suggested. Through an ITS case study, the ability of a federated model deployed on roadside infrastructure throughout the network to recover from faults by leveraging group intelligence while reducing recovery time and restoring acceptable system performance is highlighted. With a multitude of use cases and benefits, Federated Learning is a key enabler for ITS and is poised to achieve widespread implementation in 5G and beyond networks and applications.
Due to the advanced capabilities of the Internet of Vehicles (IoV) components such as vehicles, Roadside Units (RSUs) and smart devices as well as the increasing amount of data generated, Federated Learning (FL) becomes a promising tool given that it enables privacy-preserving machine learning that can be implemented in the IoV. However, the performance of the FL suffers from the failure of communication links and missing nodes, especially when continuous exchanges of model parameters are required. Therefore, we propose the use of Unmanned Aerial Vehicles (UAVs) as wireless relays to facilitate the communications between the IoV components and the FL server and thus improving the accuracy of the FL. However, a single UAV may not have sufficient resources to provide services for all iterations of the FL process. In this paper, we present a joint auction-coalition formation framework to solve the allocation of UAV coalitions to groups of IoV components. Specifically, the coalition formation game is formulated to maximize the sum of individual profits of the UAVs. The joint auction-coalition formation algorithm is proposed to achieve a stable partition of UAV coalitions in which an auction scheme is applied to solve the allocation of UAV coalitions. The auction scheme is designed to take into account the preferences of IoV components over heterogeneous UAVs. The simulation results show that the grand coalition, where all UAVs join a single coalition, is not always stable due to the profit-maximizing behavior of the UAVs. In addition, we show that as the cooperation cost of the UAVs increases, the UAVs prefer to support the IoV components independently and not to form any coalition.
222 - Zhe Wang , Xinhang Li , Tianhao Wu 2021
Federated Deep Learning (FDL) is helping to realize distributed machine learning in the Internet of Vehicles (IoV). However, FDLs global model needs multiple clients to upload learning model parameters, thus still existing unavoidable communication overhead and data privacy risks. The recently proposed Swarm Learning (SL) provides a decentralized machine-learning approach uniting edge computing and blockchain-based coordination without the need for a central coordinator. This paper proposes a Swarm-Federated Deep Learning framework in the IoV system (IoV-SFDL) that integrates SL into the FDL framework. The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL, then aggregates the global FDL model among different SL groups with a proposed credibility weights prediction algorithm. Extensive experimental results demonstrate that compared with the baseline frameworks, the proposed IoV-SFDL framework achieves a 16.72% reduction in edge-to-global communication overhead while improving about 5.02% in model performance with the same training iterations.
Medical diagnostic image analysis (e.g., CT scan or X-Ray) using machine learning is an efficient and accurate way to detect COVID-19 infections. However, sharing diagnostic images across medical institutions is usually not allowed due to the concern of patients privacy. This causes the issue of insufficient datasets for training the image classification model. Federated learning is an emerging privacy-preserving machine learning paradigm that produces an unbiased global model based on the received updates of local models trained by clients without exchanging clients local data. Nevertheless, the default setting of federated learning introduces huge communication cost of transferring model updates and can hardly ensure model performance when data heterogeneity of clients heavily exists. To improve communication efficiency and model performance, in this paper, we propose a novel dynamic fusion-based federated learning approach for medical diagnostic image analysis to detect COVID-19 infections. First, we design an architecture for dynamic fusion-based federated learning systems to analyse medical diagnostic images. Further, we present a dynamic fusion method to dynamically decide the participating clients according to their local model performance and schedule the model fusion-based on participating clients training time. In addition, we summarise a category of medical diagnostic image datasets for COVID-19 detection, which can be used by the machine learning community for image analysis. The evaluation results show that the proposed approach is feasible and performs better than the default setting of federated learning in terms of model performance, communication efficiency and fault tolerance.
Federated learning can be a promising solution for enabling IoT cybersecurity (i.e., anomaly detection in the IoT environment) while preserving data privacy and mitigating the high communication/storage overhead (e.g., high-frequency data from time-series sensors) of centralized over-the-cloud approaches. In this paper, to further push forward this direction with a comprehensive study in both algorithm and system design, we build FedIoT platform that contains FedDetect algorithm for on-device anomaly data detection and a system design for realistic evaluation of federated learning on IoT devices. Furthermore, the proposed FedDetect learning framework improves the performance by utilizing a local adaptive optimizer (e.g., Adam) and a cross-round learning rate scheduler. In a network of realistic IoT devices (Raspberry PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance. Our results demonstrate the efficacy of federated learning in detecting a wider range of attack types occurred at multiple devices. The system efficiency analysis indicates that both end-to-end training time and memory cost are affordable and promising for resource-constrained IoT devices. The source code is publicly available at https://github.com/FedML-AI/FedIoT

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا