Do you want to publish a course? Click here

Joint Auction-Coalition Formation Framework for Communication-Efficient Federated Learning in UAV-Enabled Internet of Vehicles

409   0   0.0 ( 0 )
 Added by Jer Shyuan Ng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Due to the advanced capabilities of the Internet of Vehicles (IoV) components such as vehicles, Roadside Units (RSUs) and smart devices as well as the increasing amount of data generated, Federated Learning (FL) becomes a promising tool given that it enables privacy-preserving machine learning that can be implemented in the IoV. However, the performance of the FL suffers from the failure of communication links and missing nodes, especially when continuous exchanges of model parameters are required. Therefore, we propose the use of Unmanned Aerial Vehicles (UAVs) as wireless relays to facilitate the communications between the IoV components and the FL server and thus improving the accuracy of the FL. However, a single UAV may not have sufficient resources to provide services for all iterations of the FL process. In this paper, we present a joint auction-coalition formation framework to solve the allocation of UAV coalitions to groups of IoV components. Specifically, the coalition formation game is formulated to maximize the sum of individual profits of the UAVs. The joint auction-coalition formation algorithm is proposed to achieve a stable partition of UAV coalitions in which an auction scheme is applied to solve the allocation of UAV coalitions. The auction scheme is designed to take into account the preferences of IoV components over heterogeneous UAVs. The simulation results show that the grand coalition, where all UAVs join a single coalition, is not always stable due to the profit-maximizing behavior of the UAVs. In addition, we show that as the cooperation cost of the UAVs increases, the UAVs prefer to support the IoV components independently and not to form any coalition.



rate research

Read More

Federated learning (FL) can empower Internet-of-Vehicles (IoV) networks by leveraging smart vehicles (SVs) to participate in the learning process with minimum data exchanges and privacy disclosure. The collected data and learned knowledge can help the vehicular service provider (VSP) improve the global model accuracy, e.g., for road safety as well as better profits for both VSP and participating SVs. Nonetheless, there exist major challenges when implementing the FL in IoV networks, such as dynamic activities and diverse quality-of-information (QoI) from a large number of SVs, VSPs limited payment budget, and profit competition among SVs. In this paper, we propose a novel dynamic FL-based economic framework for an IoV network to address these challenges. Specifically, the VSP first implements an SV selection method to determine a set of the best SVs for the FL process according to the significance of their current locations and information history at each learning round. Then, each selected SV can collect on-road information and offer a payment contract to the VSP based on its collected QoI. For that, we develop a multi-principal one-agent contract-based policy to maximize the profits of the VSP and learning SVs under the VSPs limited payment budget and asymmetric information between the VSP and SVs. Through experimental results using real-world on-road datasets, we show that our framework can converge 57% faster (even with only 10% of active SVs in the network) and obtain much higher social welfare of the network (up to 27.2 times) compared with those of other baseline FL methods.
Sixth-Generation (6G)-based Internet of Everything applications (e.g. autonomous driving cars) have witnessed a remarkable interest. Autonomous driving cars using federated learning (FL) has the ability to enable different smart services. Although FL implements distributed machine learning model training without the requirement to move the data of devices to a centralized server, it its own implementation challenges such as robustness, centralized server security, communication resources constraints, and privacy leakage due to the capability of a malicious aggregation server to infer sensitive information of end-devices. To address the aforementioned limitations, a dispersed federated learning (DFL) framework for autonomous driving cars is proposed to offer robust, communication resource-efficient, and privacy-aware learning. A mixed-integer non-linear (MINLP) optimization problem is formulated to jointly minimize the loss in federated learning model accuracy due to packet errors and transmission latency. Due to the NP-hard and non-convex nature of the formulated MINLP problem, we propose the Block Successive Upper-bound Minimization (BSUM) based solution. Furthermore, the performance comparison of the proposed scheme with three baseline schemes has been carried out. Extensive numerical results are provided to show the validity of the proposed BSUM-based scheme.
Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service, is increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.
In this paper, we propose a novel energy-efficient framework for an electric vehicle (EV) network using a contract theoretic-based economic model to maximize the profits of charging stations (CSs) and improve the social welfare of the network. Specifically, we first introduce CS-based and CS clustering-based decentralized federated energy learning (DFEL) approaches which enable the CSs to train their own energy transactions locally to predict energy demands. In this way, each CS can exchange its learned model with other CSs to improve prediction accuracy without revealing actual datasets and reduce communication overhead among the CSs. Based on the energy demand prediction, we then design a multi-principal one-agent (MPOA) contract-based method. In particular, we formulate the CSs utility maximization as a non-collaborative energy contract problem in which each CS maximizes its utility under common constraints from the smart grid provider (SGP) and other CSs contracts. Then, we prove the existence of an equilibrium contract solution for all the CSs and develop an iterative algorithm at the SGP to find the equilibrium. Through simulation results using the dataset of CSs transactions in Dundee city, the United Kingdom between 2017 and 2018, we demonstrate that our proposed method can achieve the energy demand prediction accuracy improvement up to 24.63% and lessen communication overhead by 96.3% compared with other machine learning algorithms. Furthermore, our proposed method can outperform non-contract-based economic models by 35% and 36% in terms of the CSs utilities and social welfare of the network, respectively.
138 - Xiaopeng Mo , Jie Xu 2020
This paper studies a federated edge learning system, in which an edge server coordinates a set of edge devices to train a shared machine learning model based on their locally distributed data samples. During the distributed training, we exploit the joint communication and computation design for improving the system energy efficiency, in which both the communication resource allocation for global ML parameters aggregation and the computation resource allocation for locally updating MLparameters are jointly optimized. In particular, we consider two transmission protocols for edge devices to upload ML parameters to edge server, based on the non orthogonal multiple access and time division multiple access, respectively. Under both protocols, we minimize the total energy consumption at all edge devices over a particular finite training duration subject to a given training accuracy, by jointly optimizing the transmission power and rates at edge devices for uploading MLparameters and their central processing unit frequencies for local update. We propose efficient algorithms to optimally solve the formulated energy minimization problems by using the techniques from convex optimization. Numerical results show that as compared to other benchmark schemes, our proposed joint communication and computation design significantly improves the energy efficiency of the federated edge learning system, by properly balancing the energy tradeoff between communication and computation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا