Do you want to publish a course? Click here

Learning from Imperfect Annotations

154   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many machine learning systems today are trained on large amounts of human-annotated data. Data annotation tasks that require a high level of competency make data acquisition expensive, while the resulting labels are often subjective, inconsistent, and may contain a variety of human biases. To improve the data quality, practitioners often need to collect multiple annotations per example and aggregate them before training models. Such a multi-stage approach results in redundant annotations and may often produce imperfect ground truth that may limit the potential of training accurate machine learning models. We propose a new end-to-end framework that enables us to: (i) merge the aggregation step with model training, thus allowing deep learning systems to learn to predict ground truth estimates directly from the available data, and (ii) model difficulties of examples and learn representations of the annotators that allow us to estimate and take into account their competencies. Our approach is general and has many applications, including training more accurate models on crowdsourced data, ensemble learning, as well as classifier accuracy estimation from unlabeled data. We conduct an extensive experimental evaluation of our method on 5 crowdsourcing datasets of varied difficulty and show accuracy gains of up to 25% over the current state-of-the-art approaches for aggregating annotations, as well as significant reductions in the required annotation redundancy.

rate research

Read More

In this paper, we study Reinforcement Learning from Demonstrations (RLfD) that improves the exploration efficiency of Reinforcement Learning (RL) by providing expert demonstrations. Most of existing RLfD methods require demonstrations to be perfect and sufficient, which yet is unrealistic to meet in practice. To work on imperfect demonstrations, we first define an imperfect expert setting for RLfD in a formal way, and then point out that previous methods suffer from two issues in terms of optimality and convergence, respectively. Upon the theoretical findings we have derived, we tackle these two issues by regarding the expert guidance as a soft constraint on regulating the policy exploration of the agent, which eventually leads to a constrained optimization problem. We further demonstrate that such problem is able to be addressed efficiently by performing a local linear search on its dual form. Considerable empirical evaluations on a comprehensive collection of benchmarks indicate our method attains consistent improvement over other RLfD counterparts.
The reliability of machine learning systems critically assumes that the associations between features and labels remain similar between training and test distributions. However, unmeasured variables, such as confounders, break this assumption---useful correlations between features and labels at training time can become useless or even harmful at test time. For example, high obesity is generally predictive for heart disease, but this relation may not hold for smokers who generally have lower rates of obesity and higher rates of heart disease. We present a framework for making models robust to spurious correlations by leveraging humans common sense knowledge of causality. Specifically, we use human annotation to augment each training example with a potential unmeasured variable (i.e. an underweight patient with heart disease may be a smoker), reducing the problem to a covariate shift problem. We then introduce a new distributionally robust optimization objective over unmeasured variables (UV-DRO) to control the worst-case loss over possible test-time shifts. Empirically, we show improvements of 5-10% on a digit recognition task confounded by rotation, and 1.5-5% on the task of analyzing NYPD Police Stops confounded by location.
105 - Jianyi Yang , Shaolei Ren 2021
A standard assumption in contextual multi-arm bandit is that the true context is perfectly known before arm selection. Nonetheless, in many practical applications (e.g., cloud resource management), prior to arm selection, the context information can only be acquired by prediction subject to errors or adversarial modification. In this paper, we study a contextual bandit setting in which only imperfect context is available for arm selection while the true context is revealed at the end of each round. We propose two robust arm selection algorithms: MaxMinUCB (Maximize Minimum UCB) which maximizes the worst-case reward, and MinWD (Minimize Worst-case Degradation) which minimizes the worst-case regret. Importantly, we analyze the robustness of MaxMinUCB and MinWD by deriving both regret and reward bounds compared to an oracle that knows the true context. Our results show that as time goes on, MaxMinUCB and MinWD both perform as asymptotically well as their optimal counterparts that know the reward function. Finally, we apply MaxMinUCB and MinWD to online edge datacenter selection, and run synthetic simulations to validate our theoretical analysis.
In this paper, we propose a new wrapper feature selection approach with partially labeled training examples where unlabeled observations are pseudo-labeled using the predictions of an initial classifier trained on the labeled training set. The wrapper is composed of a genetic algorithm for proposing new feature subsets, and an evaluation measure for scoring the different feature subsets. The selection of feature subsets is done by assigning weights to characteristics and recursively eliminating those that are irrelevant. The selection criterion is based on a new multi-class $mathcal{C}$-bound that explicitly takes into account the mislabeling errors induced by the pseudo-labeling mechanism, using a probabilistic error model. Empirical results on different data sets show the effectiveness of our framework compared to several state-of-the-art semi-supervised feature selection approaches.
The de-facto approach to many vision tasks is to start from pretrained visual representations, typically learned via supervised training on ImageNet. Recent methods have explored unsupervised pretraining to scale to vast quantities of unlabeled images. In contrast, we aim to learn high-quality visual representations from fewer images. To this end, we revisit supervised pretraining, and seek data-efficient alternatives to classification-based pretraining. We propose VirTex -- a pretraining approach using semantically dense captions to learn visual representations. We train convolutional networks from scratch on COCO Captions, and transfer them to downstream recognition tasks including image classification, object detection, and instance segmentation. On all tasks, VirTex yields features that match or exceed those learned on ImageNet -- supervised or unsupervised -- despite using up to ten times fewer images.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا