Do you want to publish a course? Click here

Reinforcement Learning from Imperfect Demonstrations under Soft Expert Guidance

150   0   0.0 ( 0 )
 Added by Xiaojian Ma
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we study Reinforcement Learning from Demonstrations (RLfD) that improves the exploration efficiency of Reinforcement Learning (RL) by providing expert demonstrations. Most of existing RLfD methods require demonstrations to be perfect and sufficient, which yet is unrealistic to meet in practice. To work on imperfect demonstrations, we first define an imperfect expert setting for RLfD in a formal way, and then point out that previous methods suffer from two issues in terms of optimality and convergence, respectively. Upon the theoretical findings we have derived, we tackle these two issues by regarding the expert guidance as a soft constraint on regulating the policy exploration of the agent, which eventually leads to a constrained optimization problem. We further demonstrate that such problem is able to be addressed efficiently by performing a local linear search on its dual form. Considerable empirical evaluations on a comprehensive collection of benchmarks indicate our method attains consistent improvement over other RLfD counterparts.



rate research

Read More

Learning robotic manipulation through reinforcement learning (RL) using only sparse reward signals is still considered a largely unsolved problem. Leveraging human demonstrations can make the learning process more sample efficient, but obtaining high-quality demonstrations can be costly or unfeasible. In this paper we propose a novel approach that introduces object-level demonstrations, i.e. examples of where the objects should be at any state. These demonstrations are generated automatically through RL hence require no expert knowledge. We observe that, during a manipulation task, an object is moved from an initial to a final position. When seen from the point of view of the object being manipulated, this induces a locomotion task that can be decoupled from the manipulation task and learnt through a physically-realistic simulator. The resulting object-level trajectories, called simulated locomotion demonstrations (SLDs), are then leveraged to define auxiliary rewards that are used to learn the manipulation policy. The proposed approach has been evaluated on 13 tasks of increasing complexity, and has been demonstrated to achieve higher success rate and faster learning rates compared to alternative algorithms. SLDs are especially beneficial for tasks like multi-object stacking and non-rigid object manipulation.
Behavior cloning (BC) is often practical for robot learning because it allows a policy to be trained offline without rewards, by supervised learning on expert demonstrations. However, BC does not effectively leverage what we will refer to as unlabeled experience: data of mixed and unknown quality without reward annotations. This unlabeled data can be generated by a variety of sources such as human teleoperation, scripted policies and other agents on the same robot. Towards data-driven offline robot learning that can use this unlabeled experience, we introduce Offline Reinforced Imitation Learning (ORIL). ORIL first learns a reward function by contrasting observations from demonstrator and unlabeled trajectories, then annotates all data with the learned reward, and finally trains an agent via offline reinforcement learning. Across a diverse set of continuous control and simulated robotic manipulation tasks, we show that ORIL consistently outperforms comparable BC agents by effectively leveraging unlabeled experience.
477 - Ruihan Yang , Huazhe Xu , Yi Wu 2020
Multi-task learning is a very challenging problem in reinforcement learning. While training multiple tasks jointly allow the policies to share parameters across different tasks, the optimization problem becomes non-trivial: It remains unclear what parameters in the network should be reused across tasks, and how the gradients from different tasks may interfere with each other. Thus, instead of naively sharing parameters across tasks, we introduce an explicit modularization technique on policy representation to alleviate this optimization issue. Given a base policy network, we design a routing network which estimates different routing strategies to reconfigure the base network for each task. Instead of directly selecting routes for each task, our task-specific policy uses a method called soft modularization to softly combine all the possible routes, which makes it suitable for sequential tasks. We experiment with various robotics manipulation tasks in simulation and show our method improves both sample efficiency and performance over strong baselines by a large margin.
Model-free deep reinforcement learning (RL) has demonstrated its superiority on many complex sequential decision-making problems. However, heavy dependence on dense rewards and high sample-complexity impedes the wide adoption of these methods in real-world scenarios. On the other hand, imitation learning (IL) learns effectively in sparse-rewarded tasks by leveraging the existing expert demonstrations. In practice, collecting a sufficient amount of expert demonstrations can be prohibitively expensive, and the quality of demonstrations typically limits the performance of the learning policy. In this work, we propose Self-Adaptive Imitation Learning (SAIL) that can achieve (near) optimal performance given only a limited number of sub-optimal demonstrations for highly challenging sparse reward tasks. SAIL bridges the advantages of IL and RL to reduce the sample complexity substantially, by effectively exploiting sup-optimal demonstrations and efficiently exploring the environment to surpass the demonstrated performance. Extensive empirical results show that not only does SAIL significantly improve the sample-efficiency but also leads to much better final performance across different continuous control tasks, comparing to the state-of-the-art.
Residual reinforcement learning (RL) has been proposed as a way to solve challenging robotic tasks by adapting control actions from a conventional feedback controller to maximize a reward signal. We extend the residual formulation to learn from visual inputs and sparse rewards using demonstrations. Learning from images, proprioceptive inputs and a sparse task-completion reward relaxes the requirement of accessing full state features, such as object and target positions. In addition, replacing the base controller with a policy learned from demonstrations removes the dependency on a hand-engineered controller in favour of a dataset of demonstrations, which can be provided by non-experts. Our experimental evaluation on simulated manipulation tasks on a 6-DoF UR5 arm and a 28-DoF dexterous hand demonstrates that residual RL from demonstrations is able to generalize to unseen environment conditions more flexibly than either behavioral cloning or RL fine-tuning, and is capable of solving high-dimensional, sparse-reward tasks out of reach for RL from scratch.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا