Do you want to publish a course? Click here

Robust Bandit Learning with Imperfect Context

106   0   0.0 ( 0 )
 Added by Jianyi Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A standard assumption in contextual multi-arm bandit is that the true context is perfectly known before arm selection. Nonetheless, in many practical applications (e.g., cloud resource management), prior to arm selection, the context information can only be acquired by prediction subject to errors or adversarial modification. In this paper, we study a contextual bandit setting in which only imperfect context is available for arm selection while the true context is revealed at the end of each round. We propose two robust arm selection algorithms: MaxMinUCB (Maximize Minimum UCB) which maximizes the worst-case reward, and MinWD (Minimize Worst-case Degradation) which minimizes the worst-case regret. Importantly, we analyze the robustness of MaxMinUCB and MinWD by deriving both regret and reward bounds compared to an oracle that knows the true context. Our results show that as time goes on, MaxMinUCB and MinWD both perform as asymptotically well as their optimal counterparts that know the reward function. Finally, we apply MaxMinUCB and MinWD to online edge datacenter selection, and run synthetic simulations to validate our theoretical analysis.

rate research

Read More

210 - Bingcong Li , Tianyi Chen , 2018
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved that become available through feedback, and are used to estimate the gradient appearing in the corresponding iterative algorithms. Since the challenging case of feedback with emph{unknown} delays prevents one from constructing the sought gradient estimates, existing MAB and BCO algorithms become intractable. For such challenging setups, delayed exploration, exploitation, and exponential (DEXP3) iterations, along with delayed bandit gradient descent (DBGD) iterations are developed for MAB and BCO, respectively. Leveraging a unified analysis framework, it is established that the regret of DEXP3 and DBGD are ${cal O}big( sqrt{Kbar{d}(T+D)} big)$ and ${cal O}big( sqrt{K(T+D)} big)$, respectively, where $bar{d}$ is the maximum delay and $D$ denotes the delay accumulated over $T$ slots. Numerical tests using both synthetic and real data validate the performance of DEXP3 and DBGD.
Adam is a widely used optimization method for training deep learning models. It computes individual adaptive learning rates for different parameters. In this paper, we propose a generalization of Adam, called Adambs, that allows us to also adapt to different training examples based on their importance in the models convergence. To achieve this, we maintain a distribution over all examples, selecting a mini-batch in each iteration by sampling according to this distribution, which we update using a multi-armed bandit algorithm. This ensures that examples that are more beneficial to the model training are sampled with higher probabilities. We theoretically show that Adambs improves the convergence rate of Adam---$O(sqrt{frac{log n}{T} })$ instead of $O(sqrt{frac{n}{T}})$ in some cases. Experiments on various models and datasets demonstrate Adambss fast convergence in practice.
We formulate a new problem at the intersectionof semi-supervised learning and contextual bandits,motivated by several applications including clini-cal trials and ad recommendations. We demonstratehow Graph Convolutional Network (GCN), a semi-supervised learning approach, can be adjusted tothe new problem formulation. We also propose avariant of the linear contextual bandit with semi-supervised missing rewards imputation. We thentake the best of both approaches to develop multi-GCN embedded contextual bandit. Our algorithmsare verified on several real world datasets.
Many machine learning systems today are trained on large amounts of human-annotated data. Data annotation tasks that require a high level of competency make data acquisition expensive, while the resulting labels are often subjective, inconsistent, and may contain a variety of human biases. To improve the data quality, practitioners often need to collect multiple annotations per example and aggregate them before training models. Such a multi-stage approach results in redundant annotations and may often produce imperfect ground truth that may limit the potential of training accurate machine learning models. We propose a new end-to-end framework that enables us to: (i) merge the aggregation step with model training, thus allowing deep learning systems to learn to predict ground truth estimates directly from the available data, and (ii) model difficulties of examples and learn representations of the annotators that allow us to estimate and take into account their competencies. Our approach is general and has many applications, including training more accurate models on crowdsourced data, ensemble learning, as well as classifier accuracy estimation from unlabeled data. We conduct an extensive experimental evaluation of our method on 5 crowdsourcing datasets of varied difficulty and show accuracy gains of up to 25% over the current state-of-the-art approaches for aggregating annotations, as well as significant reductions in the required annotation redundancy.
In this paper, we investigate a new multi-armed bandit (MAB) online learning model that considers real-world phenomena in many recommender systems: (i) the learning agent cannot pull the arms by itself and thus has to offer rewards to users to incentivize arm-pulling indirectly; and (ii) if users with specific arm preferences are well rewarded, they induce a self-reinforcing effect in the sense that they will attract more users of similar arm preferences. Besides addressing the tradeoff of exploration and exploitation, another key feature of this new MAB model is to balance reward and incentivizing payment. The goal of the agent is to maximize the total reward over a fixed time horizon $T$ with a low total payment. Our contributions in this paper are two-fold: (i) We propose a new MAB model with random arm selection that considers the relationship of users self-reinforcing preferences and incentives; and (ii) We leverage the properties of a multi-color Polya urn with nonlinear feedback model to propose two MAB policies termed At-Least-$n$ Explore-Then-Commit and UCB-List. We prove that both policies achieve $O(log T)$ expected regret with $O(log T)$ expected payment over a time horizon $T$. We conduct numerical simulations to demonstrate and verify the performances of these two policies and study their robustness under various settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا