Do you want to publish a course? Click here

Precision angular diameters for 16 southern stars with VLTI/PIONIER

126   0   0.0 ( 0 )
 Added by Adam Rains Mr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the current era of Gaia and large, high signal to noise stellar spectroscopic surveys, there is an unmet need for a reliable library of fundamentally calibrated stellar effective temperatures based on accurate stellar diameters. Here we present a set of precision diameters and temperatures for a sample of 6 dwarf, 5 sub-giant, and 5 giant stars observed with the PIONIER beam combiner at the VLTI. Science targets were observed in at least two sequences with five unique calibration stars each for accurate visibility calibration and to reduce the impact of bad calibrators. We use the standard PIONIER data reduction pipeline, but bootstrap over interferograms, in addition to employing a Monte-Carlo approach to account for correlated errors by sampling stellar parameters, limb darkening coefficients, and fluxes, as well as predicted calibrator angular diameters. The resulting diameters were then combined with bolometric fluxes derived from broadband Hipparcos-Tycho photometry and MARCS model bolometric corrections, plus parallaxes from Gaia to produce effective temperatures, physical radii, and luminosities for each star observed. Our stars have mean angular diameter and temperatures uncertainties of 0.8% and 0.9% respectively, with our sample including diameters for 10 stars with no pre-existing interferometric measurements. The remaining stars are consistent with previous measurements, with the exception of a single star which we observe here with PIONIER at both higher resolution and greater sensitivity than was achieved in earlier work.



rate research

Read More

Context : The properties of the inner disks of bright Herbig AeBe stars have been studied with near infrared (NIR) interferometry and high resolution spectroscopy. The continuum and a few molecular gas species have been studied close to the central star; however, sensitivity problems limit direct information about the inner disks of the fainter T Tauri stars. Aims : Our aim is to measure some of the properties of the inner regions of disks surrounding southern T Tauri stars. Methods : We performed a survey with the PIONIER recombiner instrument at H-band of 21 T Tauri stars. The baselines used ranged from 11 m to 129 m, corresponding to a maximum resolution of 3mas (0.45 au at 150 pc). Results : Thirteen disks are resolved well and the visibility curves are fully sampled as a function of baseline in the range 45-130 m for these 13 objects. A simple qualitative examination of visibility profiles allows us to identify a rapid drop-off in the visibilities at short baselines in 8 resolved disks. This is indicative of a significant contribution from an extended contribution of light from the disk. We demonstrate that this component is compatible with scattered light, providing strong support to a prediction made by Pinte et al. (2008). The amplitude of the drop-off and the amount of dust thermal emission changes from source to source suggesting that each disk is different. A by-product of the survey is the identification of a new milli-arcsec separation binary: WW Cha. Spectroscopic and interferometric data of AK Sco have also been fitted with a binary and disk model. Conclusions : Visibility data are reproduced well when thermal emission and scattering form dust are fully considered. The inner radii measured are consistent with the expected dust sublimation radii. Modelling of AK Sco suggests a likely coplanarity between the disk and the binarys orbital plane
The Exozodi survey aims to determine the occurrence rate of bright exozodiacal discs around nearby main sequence stars using infrared interferometry. Although the Exozodi survey targets have been carefully selected to avoid the presence of binary stars, the results of this survey can still be biased by the presence of unidentified stellar companions. Using the PIONIER data set collected within the Exozodi survey, we aim to search for the signature of point-like companions around the Exozodi target stars. We use both the closure phases and squared visibilities collected by PIONIER to search for companions within the ~100 mas interferometric field of view. The presence of a companion is assessed by computing the goodness of fit to the data for a series of binary models with various separations and contrasts. Five stellar companions are resolved for the first time around five A-type stars: HD 4150, HD 16555, HD 29388, HD 202730, and HD 224392 (although the companion to HD 16555 was independently resolved by speckle interferometry while we were carrying out the survey). In the most likely case of main sequence companions, their spectral types range from A5V to K4V. Three of these stars were already suspected to be binaries from Hipparcos astrometric measurements, although no information was available on the companions themselves so far. In addition to debiasing the statistics of the Exozodi survey, these results can also be used to revise the fraction of visual binaries among A-type stars, suggesting that an extra ~13% A-type stars are visual binaries in addition to the ones detected in previous direct imaging surveys. We estimate that about half the population of nearby A-type stars could be resolved as visual binaries using a combination of state-of-the-art interferometry and single-aperture imaging, and we suggest that a significant fraction of these binaries remains undetected to date.
We aim at resolving the circumstellar environment around beta Pic in the near-infrared in order to study the inner planetary system (< 200 mas, i.e., ~4 AU). Precise interferometric fringe visibility measurements were obtained over seven spectral channels dispersed across the H band with the four-telescope VLTI/PIONIER interferometer. Thorough analysis of interferometric data was performed to measure the stellar angular diameter and to search for circumstellar material. We detected near-infrared circumstellar emission around beta Pic that accounts for 1.37% +/- 0.16% of the near-infrared stellar flux and that is located within the field-of-view of PIONIER (i.e., ~200 mas in radius). The flux ratio between this excess and the photosphere emission is shown to be stable over a period of 1 year and to vary only weakly across the H band, suggesting that the source is either very hot (> 1500 K) or dominated by the scattering of the stellar flux. In addition, we derived the limb-darkened angular diameter of beta Pic with an unprecedented accuracy (theta_LD= 0.736 +/- 0.019 mas). The presence of a small H-band excess originating in the vicinity of beta Pic is revealed for the first time thanks to the high-precision visibilities enabled by VLTI/PIONIER. This excess emission is likely due to the scattering of stellar light by circumstellar dust and/or the thermal emission from a yet unknown population of hot dust, although hot gas emitting in the continuum cannot be firmly excluded.
Context. Detecting and characterizing circumstellar dust is a way to study the architecture and evolution of planetary systems. Cold dust in debris disks only traces the outer regions. Warm and hot exozodiacal dust needs to be studied in order to trace regions close to the habitable zone. Aims. We aim to determine the prevalence and to constrain the properties of hot exozodiacal dust around nearby main-sequence stars. Methods. We search a magnitude limited (H < 5) sample of 92 stars for bright exozodiacal dust using our VLTI visitor instrument PIONIER in the H-band. We derive statistics of the detection rate with respect to parameters such as the stellar spectral type and age or the presence of a debris disk in the outer regions of the systems. We derive more robust statistics by combining our sample with the results from our CHARA/FLUOR survey in the K-band. In addition, our spectrally dispersed data allows us to put constraints on the emission mechanism and the dust properties in the detected systems. Results. We find an over-all detection rate of bright exozodiacal dust in the H-band of 11% (9 out of 85 targets) and three tentative detections. The detection rate decreases from early type to late type stars and increases with the age of the host star. We do not confirm the tentative correlation between the presence of cold and hot dust found in our earlier analysis of the FLUOR sample alone. Our spectrally dispersed data suggest that either the dust is extremely hot or the emission is dominated by the scattered light in most cases. The implications of our results for the target selection of future terrestrial planet finding missions using direct imaging are discussed.
Binarity and multiplicity appear to be a common outcome in star formation. In particular, the binary fraction of massive (OB-type) stars can be very high. In many cases, the further stellar evolution of these stars is affected by binary interactions at some stage during their lifetime. The origin of this high binarity and the binary parameters are poorly understood because observational constraints are scarce, which is predominantly due to a dearth of known young massive binary systems. We aim to identify and describe massive young binary systems in order to fill in the gaps of our knowledge of primordial binarity of massive stars, which is crucial for our understanding of massive star formation. We observed the two massive young stellar objects (MYSOs) PDS 27 and PDS 37 at the highest spatial resolution provided by VLTI/PIONIER in the H-band (1.3 mas). We applied geometrical models to fit the observed squared visibilities and closure phases. In addition, we performed a radial velocity analysis using published VLT/FORS2 spectropolarimetric and VLT/X-shooter spectroscopic observations. Our findings suggest binary companions for both objects at 12 mas (30 au) for PDS 27 and at 22-28 mas (42-54 au) for PDS 37. This means that they are among the closest MYSO binaries resolved to date. Our data spatially resolve PDS 27 and PDS 37 for the first time, revealing two of the closest and most massive ($>$8 M$_odot$) YSO binary candidates to date. PDS 27 and PDS 37 are rare but great laboratories to quantitatively inform and test the theories on formation of such systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا