No Arabic abstract
Binarity and multiplicity appear to be a common outcome in star formation. In particular, the binary fraction of massive (OB-type) stars can be very high. In many cases, the further stellar evolution of these stars is affected by binary interactions at some stage during their lifetime. The origin of this high binarity and the binary parameters are poorly understood because observational constraints are scarce, which is predominantly due to a dearth of known young massive binary systems. We aim to identify and describe massive young binary systems in order to fill in the gaps of our knowledge of primordial binarity of massive stars, which is crucial for our understanding of massive star formation. We observed the two massive young stellar objects (MYSOs) PDS 27 and PDS 37 at the highest spatial resolution provided by VLTI/PIONIER in the H-band (1.3 mas). We applied geometrical models to fit the observed squared visibilities and closure phases. In addition, we performed a radial velocity analysis using published VLT/FORS2 spectropolarimetric and VLT/X-shooter spectroscopic observations. Our findings suggest binary companions for both objects at 12 mas (30 au) for PDS 27 and at 22-28 mas (42-54 au) for PDS 37. This means that they are among the closest MYSO binaries resolved to date. Our data spatially resolve PDS 27 and PDS 37 for the first time, revealing two of the closest and most massive ($>$8 M$_odot$) YSO binary candidates to date. PDS 27 and PDS 37 are rare but great laboratories to quantitatively inform and test the theories on formation of such systems.
We present K-band interferometric observations of the PDS 70 protoplanets along with their host star using VLTI/GRAVITY. We obtained K-band spectra and 100 $mu$as precision astrometry of both PDS 70 b and c in two epochs, as well as spatially resolving the hot inner disk around the star. Rejecting unstable orbits, we found a nonzero eccentricity for PDS 70 b of $0.17 pm 0.06$, a near-circular orbit for PDS 70 c, and an orbital configuration that is consistent with the planets migrating into a 2:1 mean motion resonance. Enforcing dynamical stability, we obtained a 95% upper limit on the mass of PDS 70 b of 10 $M_textrm{Jup}$, while the mass of PDS 70 c was unconstrained. The GRAVITY K-band spectra rules out pure blackbody models for the photospheres of both planets. Instead, the models with the most support from the data are planetary atmospheres that are dusty, but the nature of the dust is unclear. Any circumplanetary dust around these planets is not well constrained by the planets 1-5 $mu$m spectral energy distributions (SEDs) and requires longer wavelength data to probe with SED analysis. However with VLTI/GRAVITY, we made the first observations of a circumplanetary environment with sub-au spatial resolution, placing an upper limit of 0.3~au on the size of a bright disk around PDS 70 b.
Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$, as observed through observations of its blue-shifted iron K-shell absorption line profile. Here we present three new XMM-Newton observations of PDS 456; one in September 2018 where the quasar was bright and featureless, and two in September 2019, 22 days apart, occurring when the quasar was five times fainter and where strong blue-shifted lines from the wind were present. During the second September 2019 observation, three broad ($sigma=3000$ km s$^{-1}$) absorption lines were resolved in the high resolution RGS spectrum, which are identified with blue-shifted OVIII Ly$alpha$, NeIX He$alpha$ and NeX Ly$alpha$. The outflow velocity of this soft X-ray absorber was found to be $v/c=-0.258pm0.003$, fully consistent with iron K absorber with $v/c=-0.261pm0.007$. The ionization parameter and column density of the soft X-ray component ($logxi=3.4$, $N_{rm H}=2times10^{21}$ cm$^{-2}$) outflow was lower by about two orders of magnitude, when compared to the high ionization wind at iron K ($logxi=5$, $N_{rm H}=7times10^{23}$ cm$^{-2}$). Substantial variability was seen in the soft X-ray absorber between the 2019 observations, declining from $N_{rm H}=10^{23}$ cm$^{-2}$ to $N_{rm H}=10^{21}$ cm$^{-2}$ over 20 days, while the iron K component was remarkably stable. We conclude that the soft X-ray wind may originate from an inhomogeneous wind streamline passing across the line of sight and which due to its lower ionization, is located further from the black hole, on parsec scales, than the innermost disk wind.
Post-AGB binaries are surrounded by circumbinary disks of gas and dust that are similar to protoplanetary disks found around young stars. We aim to understand the structure of these disks and identify the physical phenomena at play in their very inner regions. We want to understand the disk-binary interaction and to further investigate the comparison with protoplanetary disks. We have conducted an interferometric snapshot survey of 23 post-AGB binaries in the near-infrared (H-band) using VLTI/PIONIER. We have fitted the multiwavelength visibilities and closure phases with purely geometrical models with an increasing complexity in order to retrieve the sizes, temperatures and flux ratios of the different components All sources are resolved and the different components contributing to the H-band flux are dissected. The environment of these targets is very complex: 13/23 targets need models with thirteen or more parameters to fit the data. We find that the inner disk rims follow and extend the size-luminosity relation established for disks around young stars with an offset toward larger sizes. The measured temperature of the near-infrared circumstellar emission of post-AGB binaries is lower (Tsub~1200K) than for young stars, probably due to a different dust mineralogy and/or gas density in the dust sublimation region. The dusty inner rims of the circumbinary disks around post-AGB binaries are ruled by dust sublimation physics. Additionally, a significant amount of the circumstellar H-band flux is over-resolved (14 targets have more than 10% of their non-stellar flux over-resolved) hinting for more structure from a yet unknown origin (disk structure or outflow). The amount of over-resolved flux is larger than around young stars. Due to the complexity of these targets, interferometric imaging is a necessary tool to reveal the interacting inner regions in a model-independent way.
We aim at resolving the circumstellar environment around beta Pic in the near-infrared in order to study the inner planetary system (< 200 mas, i.e., ~4 AU). Precise interferometric fringe visibility measurements were obtained over seven spectral channels dispersed across the H band with the four-telescope VLTI/PIONIER interferometer. Thorough analysis of interferometric data was performed to measure the stellar angular diameter and to search for circumstellar material. We detected near-infrared circumstellar emission around beta Pic that accounts for 1.37% +/- 0.16% of the near-infrared stellar flux and that is located within the field-of-view of PIONIER (i.e., ~200 mas in radius). The flux ratio between this excess and the photosphere emission is shown to be stable over a period of 1 year and to vary only weakly across the H band, suggesting that the source is either very hot (> 1500 K) or dominated by the scattering of the stellar flux. In addition, we derived the limb-darkened angular diameter of beta Pic with an unprecedented accuracy (theta_LD= 0.736 +/- 0.019 mas). The presence of a small H-band excess originating in the vicinity of beta Pic is revealed for the first time thanks to the high-precision visibilities enabled by VLTI/PIONIER. This excess emission is likely due to the scattering of stellar light by circumstellar dust and/or the thermal emission from a yet unknown population of hot dust, although hot gas emitting in the continuum cannot be firmly excluded.
In the current era of Gaia and large, high signal to noise stellar spectroscopic surveys, there is an unmet need for a reliable library of fundamentally calibrated stellar effective temperatures based on accurate stellar diameters. Here we present a set of precision diameters and temperatures for a sample of 6 dwarf, 5 sub-giant, and 5 giant stars observed with the PIONIER beam combiner at the VLTI. Science targets were observed in at least two sequences with five unique calibration stars each for accurate visibility calibration and to reduce the impact of bad calibrators. We use the standard PIONIER data reduction pipeline, but bootstrap over interferograms, in addition to employing a Monte-Carlo approach to account for correlated errors by sampling stellar parameters, limb darkening coefficients, and fluxes, as well as predicted calibrator angular diameters. The resulting diameters were then combined with bolometric fluxes derived from broadband Hipparcos-Tycho photometry and MARCS model bolometric corrections, plus parallaxes from Gaia to produce effective temperatures, physical radii, and luminosities for each star observed. Our stars have mean angular diameter and temperatures uncertainties of 0.8% and 0.9% respectively, with our sample including diameters for 10 stars with no pre-existing interferometric measurements. The remaining stars are consistent with previous measurements, with the exception of a single star which we observe here with PIONIER at both higher resolution and greater sensitivity than was achieved in earlier work.