Do you want to publish a course? Click here

Hot circumstellar material resolved around beta Pic with VLTI/PIONIER

135   0   0.0 ( 0 )
 Added by Denis Defr\\`ere
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim at resolving the circumstellar environment around beta Pic in the near-infrared in order to study the inner planetary system (< 200 mas, i.e., ~4 AU). Precise interferometric fringe visibility measurements were obtained over seven spectral channels dispersed across the H band with the four-telescope VLTI/PIONIER interferometer. Thorough analysis of interferometric data was performed to measure the stellar angular diameter and to search for circumstellar material. We detected near-infrared circumstellar emission around beta Pic that accounts for 1.37% +/- 0.16% of the near-infrared stellar flux and that is located within the field-of-view of PIONIER (i.e., ~200 mas in radius). The flux ratio between this excess and the photosphere emission is shown to be stable over a period of 1 year and to vary only weakly across the H band, suggesting that the source is either very hot (> 1500 K) or dominated by the scattering of the stellar flux. In addition, we derived the limb-darkened angular diameter of beta Pic with an unprecedented accuracy (theta_LD= 0.736 +/- 0.019 mas). The presence of a small H-band excess originating in the vicinity of beta Pic is revealed for the first time thanks to the high-precision visibilities enabled by VLTI/PIONIER. This excess emission is likely due to the scattering of stellar light by circumstellar dust and/or the thermal emission from a yet unknown population of hot dust, although hot gas emitting in the continuum cannot be firmly excluded.



rate research

Read More

Post-AGB binaries are surrounded by circumbinary disks of gas and dust that are similar to protoplanetary disks found around young stars. We aim to understand the structure of these disks and identify the physical phenomena at play in their very inner regions. We want to understand the disk-binary interaction and to further investigate the comparison with protoplanetary disks. We have conducted an interferometric snapshot survey of 23 post-AGB binaries in the near-infrared (H-band) using VLTI/PIONIER. We have fitted the multiwavelength visibilities and closure phases with purely geometrical models with an increasing complexity in order to retrieve the sizes, temperatures and flux ratios of the different components All sources are resolved and the different components contributing to the H-band flux are dissected. The environment of these targets is very complex: 13/23 targets need models with thirteen or more parameters to fit the data. We find that the inner disk rims follow and extend the size-luminosity relation established for disks around young stars with an offset toward larger sizes. The measured temperature of the near-infrared circumstellar emission of post-AGB binaries is lower (Tsub~1200K) than for young stars, probably due to a different dust mineralogy and/or gas density in the dust sublimation region. The dusty inner rims of the circumbinary disks around post-AGB binaries are ruled by dust sublimation physics. Additionally, a significant amount of the circumstellar H-band flux is over-resolved (14 targets have more than 10% of their non-stellar flux over-resolved) hinting for more structure from a yet unknown origin (disk structure or outflow). The amount of over-resolved flux is larger than around young stars. Due to the complexity of these targets, interferometric imaging is a necessary tool to reveal the interacting inner regions in a model-independent way.
In this paper we present simulated observations of massive self-gravitating circumstellar discs using the Atacama Large Millimetre/sub-millimetre Array (ALMA). Using a smoothed particle hydrodynamics model of a $0.2M_{odot}$ disc orbiting a $1M_{odot}$ protostar, with a cooling model appropriate for discs at temperatures below $sim 160$K and representative dust opacities, we have constructed maps of the expected emission at sub-mm wavelengths. We have then used the CASA ALMA simulator to generate simulated images and visibilities with various array configurations and observation frequencies, taking into account the expected thermal noise and atmospheric opacities. We find that at 345 GHz (870 $mu$m) spiral structures at a resolution of a few AU should be readily detectable in approximately face-on discs out to distances of the Taurus-Auriga star-forming complex.
111 - V. Hocde , N. Nardetto , A. Matter 2021
The nature of circumstellar envelopes (CSE) around Cepheids is still a matter of debate. The physical origin of their infrared (IR) excess could be either a shell of ionized gas, or a dust envelope, or both. This study aims at constraining the geometry and the IR excess of the environment of the long-period Cepheid $ell$ Car (P=35.5 days) at mid-IR wavelengths to understand its physical nature. We first use photometric observations in various bands and Spitzer Space Telescope spectroscopy to constrain the IR excess of $ell$ Car. Then, we analyze the VLTI/MATISSE measurements at a specific phase of observation, in order to determine the flux contribution, the size and shape of the environment of the star in the L band. We finally test the hypothesis of a shell of ionized gas in order to model the IR excess. We report the first detection in the L band of a centro-symmetric extended emission around l Car, of about 1.7$R_star$ in FWHM, producing an excess of about 7.0% in this band. In the N band, there is no clear evidence for dust emission from VLTI/MATISSE correlated flux and Spitzer data. On the other side, the modeled shell of ionized gas implies a more compact CSE ($1.13pm0.02,R_star$) and fainter (IR excess of 1% in the L band). We provide new evidences for a compact CSE of $ell$ Car and we demonstrate the capabilities of VLTI/MATISSE for determining common properties of CSEs. While the compact CSE of $ell$ Car is probably of gaseous nature, the tested model of a shell of ionized gas is not able to simultaneously reproduce the IR excess and the interferometric observations. Further Galactic Cepheids observations with VLTI/MATISSE are necessary for determining the properties of CSEs, which may also depend on both the pulsation period and the evolutionary state of the stars.
In the current era of Gaia and large, high signal to noise stellar spectroscopic surveys, there is an unmet need for a reliable library of fundamentally calibrated stellar effective temperatures based on accurate stellar diameters. Here we present a set of precision diameters and temperatures for a sample of 6 dwarf, 5 sub-giant, and 5 giant stars observed with the PIONIER beam combiner at the VLTI. Science targets were observed in at least two sequences with five unique calibration stars each for accurate visibility calibration and to reduce the impact of bad calibrators. We use the standard PIONIER data reduction pipeline, but bootstrap over interferograms, in addition to employing a Monte-Carlo approach to account for correlated errors by sampling stellar parameters, limb darkening coefficients, and fluxes, as well as predicted calibrator angular diameters. The resulting diameters were then combined with bolometric fluxes derived from broadband Hipparcos-Tycho photometry and MARCS model bolometric corrections, plus parallaxes from Gaia to produce effective temperatures, physical radii, and luminosities for each star observed. Our stars have mean angular diameter and temperatures uncertainties of 0.8% and 0.9% respectively, with our sample including diameters for 10 stars with no pre-existing interferometric measurements. The remaining stars are consistent with previous measurements, with the exception of a single star which we observe here with PIONIER at both higher resolution and greater sensitivity than was achieved in earlier work.
70 - L. Chen , A. Kospal , P. Abraham 2017
An essential step to understanding protoplanetary evolution is the study of disks that contain gaps or inner holes. The pretransitional disk around the Herbig star HD 169142 exhibits multi-gap disk structure, differentiated gas and dust distribution, planet candidates, and near-infrared fading in the past decades, which make it a valuable target for a case study of disk evolution. Using near-infrared interferometric observations with VLTI/PIONIER, we aim to study the dust properties in the inner sub-au region of the disk in the years 2011-2013, when the object is already in its near-infrared faint state. We first performed simple geometric modeling to characterize the size and shape of the NIR-emitting region. We then performed Monte-Carlo radiative transfer simulations on grids of models and compared the model predictions with the interferometric and photometric observations. We find that the observations are consistent with optically thin gray dust lying at Rin ~ 0.07 au, passively heated to T ~ 1500 K. Models with sub-micron optically thin dust are excluded because such dust will be heated to much higher temperatures at similar distance. The observations can also be reproduced with a model consisting of optically thick dust at Rin ~ 0.06 au, but this model is plausible only if refractory dust species enduring ~2400 K exist in the inner disk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا