No Arabic abstract
Capabilities of highly sensitive surface-enhanced infrared absorption (SEIRA) spectroscopy are demonstrated by exploiting large-area templates ($cm^2$) based on self-organized (SO) nanorod antennas. We engineered highly dense arrays of gold nanorod antennas featuring polarization-sensitive localized plasmon resonances, tunable over a broadband near- and mid-infrared (IR) spectrum, in overlap with the so-called functional group window. We demonstrate polarization-sensitive SEIRA activity, homogeneous over macroscopic areas and stable in time, by exploiting prototype self-assembled monolayers of IR-active octadecanthiol (ODT) molecules. The strong coupling between the plasmonic excitation and molecular stretching modes gives rise to characteristic Fano resonances in SEIRA. The SO engineering of the active hotspots in the arrays allows us to achieve signal amplitude improved up to 5.7%. This figure is competitive to the response of lithographic nanoantennas and is stable when the optical excitation spot varies from the micro- to macroscale, thus enabling highly sensitive SEIRA spectroscopy with cost-effective nanosensor devices.
The temperature increase and temperature gradients induced by mid-infrared laser illumination of vertical gold nanoantenna arrays embedded into polymer layers was measured directly with a photothermal expansion nanoscope. Nanoscale thermal hotspot images and local temperature increase spectra were both obtained, the latter by broadly tuning the emission wavelength of a quantum cascade laser. The spectral analysis indicates that plasmon-enhanced mid-infrared vibrations of molecules located in the antenna hotspots are responsible for some of the thermoplasmonic resonances, while Joule heating in gold is responsible for the remaining resonances. In particular, plasmonic dark modes with low scattering cross-section mostly produce surface-enhanced infrared absorption (SEIRA), while bright modes with strong radiation coupling produce Joule heating. The dark modes do not modify the molecular absorption lineshape and the related temperature increase is chemically triggered by the presence of molecules with vibrational fingerprints resonant with the plasmonic dark modes. The bright modes, instead, are prone to Fano interference, display an asymmetric molecular absorption lineshape and generate heat also at frequencies far from molecular vibrations, insofar lacking chemical specificity. For focused mid-infrared laser power of 50 mW, the measured nanoscale temperature increases are in the range of 10 K and temperature gradients reach 5 K/$mu$m in the case of dark modes resonating with strong infrared vibrations such as the C=O bond of poly-methylmethacrylate at 1730 cm$^{-1}$.
The formation of water-in-oil-in-water (W/O/W) double emulsions can be well-controlled through an organized self-emulsification mechanism in the presence of rigid bottlebrush amphiphilic block copolymers. Nanoscale water droplets with well-controlled diameters form ordered spatial arrangements within the micron-scale oil droplets. Upon solvent evaporation, solid microspheres with hexagonal close packed nanopore arrays are obtained resulting in bright structural colors. The reflected color is precisely tunable across the whole visible light range through tailoring contour length of the bottlebrush molecule. In-situ observation of the W/O interface using confocal laser scanning microscopy provides insights into the mechanism of the organized self-emulsification. This work provides a powerful strategy for the fabrication of structural colored materials in an easy and scalable manner.
Surface electronic structures of the photoelectrodes determine the activity and efficiency of the photoelectrochemical water splitting, but the controls of their surface structures and interfacial chemical reactions remain challenging. Here, we use ferroelectric BiFeO3 as a model system to demonstrate an efficient and controllable water splitting reaction by large-area constructing the hydroxyls-bonded surface. The up-shift of band edge positions at this surface enables and enhances the interfacial holes and electrons transfer through the hydroxyl-active-sites, leading to simultaneously enhanced oxygen and hydrogen evolutions. Furthermore, printing of ferroelectric super-domains with microscale checkboard up/down electric fields separates the distribution of reduction/oxidation catalytic sites, enhancing the charge separation and giving rise to an order of magnitude increase of the photocurrent. This large-area printable ferroelectric surface and super-domains offer an alternative platform for controllable and high-efficient photocatalysis.
Enhancing light-matter interaction by exciting Dirac plasmons on nanopatterned monolayer graphene is an efficient route to achieve high infrared absorption. Here, we designed and fabricated the hexagonal planar arrays of nanohole and nanodisk with and without optical cavity to excite Dirac plasmons on the patterned graphene and investigated the role of plasmon lifetime, extinction cross-section, incident light polarization, the angle of incident of light and pattern dimensions on the light absorption spectra.
Fabricating high-performance and/or high-density flexible electronics on plastic substrates is often limited by the poor dimensional stability of polymer substrates. This can be mitigated by using glass carriers during fabrication, but removing the plastic substrate from a large-area carrier without damaging the electronics remains challenging. Here we present a large-area photonic lift-off (PLO) process to rapidly separate polymer films from rigid carriers. PLO uses a 150 microsecond pulse of broadband light from flashlamps to lift off functional thin films from a glass carrier substrate coated with a light-absorber layer (LAL). A 3D finite element model indicates that the polymer/LAL interface reaches 865 degrees C during PLO, but the top surface of the PI reaches only 118 degrees C. To demonstrate the feasibility of this process in the production of flexible electronics, an array of indium zinc oxide (IZO) thin-film transistors (TFTs) was fabricated on a polyimide substrate and then photonically lifted off from the glass carrier. The TFT mobility was 3.15 cm2V-1s-1 before and after PLO, indicating no significant change during PLO. The flexible TFTs were mechanically robust, with no reduction in mobility while bent. The PLO process can offer unmatched high-throughput solutions in large-area flexible electronics production.