No Arabic abstract
Fabricating high-performance and/or high-density flexible electronics on plastic substrates is often limited by the poor dimensional stability of polymer substrates. This can be mitigated by using glass carriers during fabrication, but removing the plastic substrate from a large-area carrier without damaging the electronics remains challenging. Here we present a large-area photonic lift-off (PLO) process to rapidly separate polymer films from rigid carriers. PLO uses a 150 microsecond pulse of broadband light from flashlamps to lift off functional thin films from a glass carrier substrate coated with a light-absorber layer (LAL). A 3D finite element model indicates that the polymer/LAL interface reaches 865 degrees C during PLO, but the top surface of the PI reaches only 118 degrees C. To demonstrate the feasibility of this process in the production of flexible electronics, an array of indium zinc oxide (IZO) thin-film transistors (TFTs) was fabricated on a polyimide substrate and then photonically lifted off from the glass carrier. The TFT mobility was 3.15 cm2V-1s-1 before and after PLO, indicating no significant change during PLO. The flexible TFTs were mechanically robust, with no reduction in mobility while bent. The PLO process can offer unmatched high-throughput solutions in large-area flexible electronics production.
High throughput experimental methods are known to accelerate the rate of research, development, and deployment of electronic materials. For example, thin films with lateral gradients in composition, thickness, or other parameters have been used alongside spatially-resolved characterization to assess how various physical factors affect material properties under varying measurement conditions. Similarly, multi-layer electronic devices that contain such graded thin films as one or more of their layers can also be characterized spatially in order to optimize the performance. In this work, we apply these high throughput experimental methods to thin film transistors (TFTs), demonstrating combinatorial device fabrication and semi-automated characterization using sputtered Indium-Gallium-Zinc-Oxide (IGZO) TFTs as a case study. We show that both extrinsic and intrinsic types of device gradients can be generated in a TFT library, such as channel thickness and length, channel cation compositions, and oxygen atmosphere during deposition. We also present a semi-automated method to measure the 44 devices fabricated on a 50x50mm substrate that can help to identify properly functioning TFTs in the library and finish the measurement in a short time. Finally, we propose a fully automated characterization system for similar TFT libraries, which can be coupled with high throughput data analysis. These results demonstrate that high throughput methods can accelerate the investigation of TFTs and other electronic devices.
Flexible and transparent electronics presents a new era of electronic technologies. Ubiquitous applications involve wearable electronics, biosensors, flexible transparent displays, radio-frequency identifications (RFIDs), etc.Zinc oxide (ZnO) and related materials are the most commonly used inorganic semiconductors in flexible and transparent devices, owing to their high electrical performance, together with low processing temperature and good optical transparency.In this paper, we review recent advances in flexible and transparent thin-film transistors (TFTs) based on ZnO and related materials.After a brief introduction, the main progresses on the preparation of each component (substrate, electrodes, channel and dielectrics) are summarized and discussed. Then, the effect of mechanical bending on electrical performance was highlighted. Finally, we suggest the challenges and opportunities in future investigations.
MPC (Magneto-Photonic Crystal) Optimisation is a feature-rich Windows software application designed to enable researchers to analyze the optical and magneto-optical spectral properties of multilayers containing gyrotropic constituents. A set of computational algorithms aimed at enabling the design optimization and optical or magneto-optical (MO) spectral analysis of 1D magnetic photonic crystals (MPC) is reported, together with its Windows software implementation. Relevant material property datasets (e.g., the optical spectra of refractive index, absorption, and gyration) of several important optical and MO materials are included, enabling easy reproduction of the previously published results from the field of MPC-based Faraday rotator development, and an effective demonstration-quality introduction of future users to the multiple features of this package. We also report on the methods and algorithms used to obtain the absorption coefficient spectral dispersion datasets for new materials, for which the film thickness, transmission spectrum, and refractive index dispersion function are known.
Fabrication techniques such as laser patterning offer excellent potential for low cost and large area device fabrication. Conductive polymers can be used to replace expensive metallic inks such as silver and gold nanoparticles for printing technology. Electrical conductivity of the polymers can be improved by blending with carbon nanotubes. In this work, formulations of acid functionalised multiwall carbon nanotubes (f-MWCNT) and poly (ethylenedioxythiophene) [PEDOT]: polystyrene sulphonate [PSS] were processed, and thin films were prepared on plastic substrates. Conductivity of PEDOT: PSS increased almost four orders of magnitude after adding f-MWCNT. Work function of PEDOT:PSS/f-MWCNT films was ~ 0.5eV higher as compared to the work function of pure PEDOT:PSS films, determined by Kelvin probe method. Field-effect transistors source-drain electrodes were prepared on PET plastic substrates where PEDOT:PSS/f-MWCNT were patterned using laser ablation at 44mJ/pulse energy to define 36 micron electrode separation. Silicon nanowires were deposited using dielectrophoresis alignment technique to bridge the PEDOT:PSS/f-MWCNT laser patterned electrodes. Finally, top-gated nanowire field effect transistors were completed by depositing parylene C as polymer gate dielectric and gold as the top-gate electrode. Transistor characteristics showed p-type conduction with excellent gate electrode coupling, with an ON/OFF ratio of ~ 200. Thereby, we demonstrate the feasibility of using high workfunction, printable PEDOT:PSS/MWCNT composite inks for patterning source/drain electrodes for nanowire transistors on flexible substrates.
Kapton HN films, adopted worldwide due to their superior thermal durability (up to 400 {deg}C), allow the high temperature sintering of nanoparticle based metal inks. By carefully selecting inks and Kapton substrates, outstanding thermal stability and anti-delaminating features are obtained in both aqueous and organic solutions and were applied to four novel devices: a solid state ion selective nitrate sensor, an ssDNA based mercury aptasensor, a low cost protein sensor, and a long lasting organic thin film transistor (OTFT). Many experimental studies on parameter combinations were conducted during the development of the above devices. The results showed that the ion selective nitrate sensor displayed a linear sensitivity range with a limit of detection of 2 ppm. The mercury sensor exhibited a linear correlation between the RCT values and the increasing concentrations of mercury. The protein printed circuit board (PCB) sensor provided a much simpler method of protein detection. Finally, the OTFT demonstrated a stable performance with mobility values for the linear and saturation regimes, and the threshold voltage. These devices have shown their value and reveal possibilities that could be pursued.